|
|
last edited 10 years ago by test1 |
1 2 | ||
Editor:
Time: 2007/11/17 21:55:49 GMT-8 |
||
Note: revert status |
changed: - Original Issue Report \begin{axiom} digamma 2 \end{axiom} Has to return digamma(2) (EXPR INT) Analysis The statement of the issue is to terse and vague to be sure what the author had in mind, but assuming that s/he expected the result to be of type EXPR INT, here is how to see what is going on. Use the option ')set message selection on' to trace how Axiom finds the signature of the appropriate digamma function: \begin{axiom} )set message selection on digamma 2 \end{axiom} Axiom finds 3 possible signatures and applies the first one because 2 can be coerced to DoubleFloat. But we can ask Axiom to take the third option by either specifically treating the type of the input 2 as EXPR INT or by asking for something of type EXPR INT as the result. \begin{axiom} digamma(2::EXPR INT) digamma(2)@(EXPR INT) \end{axiom} Of course as something of type EXPR INT this expression has no simplier representation. From BillPage Wed Mar 23 16:17:27 -0600 2005 From: Bill Page Date: Wed, 23 Mar 2005 16:17:27 -0600 Subject: this works as documented Message-ID: <20050323161727-0600@page.axiom-developer.org> Status: open => rejected Sorry to respond to this but in Axiom, all trigonometric, transcendental etc.. functions is returned in EXPR INT if there is no integer functions. I think that Axiom has to return digamma(2) and digamma(2.0) the SF result. This permit to work directly on expression. You can test some other symbolic CAS.But may be I'm wrong. From BillPage Wed Mar 23 18:06:05 -0600 2005 From: Bill Page Date: Wed, 23 Mar 2005 18:06:05 -0600 Subject: PLEASE RESPOND and THANK YOU Message-ID: <20050323180605-0600@page.axiom-developer.org> Please do **not** be "sorry to respond" - that is the purpose of this website! By the way, I think it would be polite (but it is not necessary) for you identify yourself by clicking on "preferences":UserOptions rather than remaining anonymous. What I think you mean is this: Why is the mode selection for the following pairs of expressions different? \begin{axiom} )set message selection on sin(2) digamma(2) \end{axiom} and \begin{axiom} sin(2.0) digamma(2.0) \end{axiom} Since sin is defined in DoubleFloat and digamma is defined in DoubleFloatSpecialFunctions one should expect similar treatment. \begin{axiom} )show DoubleFloat )show DoubleFloatSpecialFunctions \end{axiom} From BillPage Wed Mar 23 18:10:37 -0600 2005 From: Bill Page Date: Wed, 23 Mar 2005 18:10:37 -0600 Subject: please excuse my premature change of status Message-ID: <20050323181037-0600@page.axiom-developer.org> Status: rejected => open From BillPage Wed Mar 23 20:06:31 -0600 2005 From: Bill Page Date: Wed, 23 Mar 2005 20:06:31 -0600 Subject: Treating special functions like Expression Integer Message-ID: <20050323200631-0600@page.axiom-developer.org> Apparently the difference has something to do with the fact that **DoubleFloat** is a 'domain' while **DoubleFloatSpecialFunctions** is a 'package'. It is possible to obtain some of the effectst that you want by dropping the **DoubleFloatSpecialFunctions** from the list of exposed constructors. \begin{axiom} )set expose drop constructor DoubleFloatSpecialFunctions \end{axiom} Then these are treated the same \begin{axiom} sin(2) digamma(2) \end{axiom} except now it is necessary to do a package call to evaluate it even for something that is a floating point value. \begin{axiom} digamma(2.0) digamma(2.0)$DoubleFloatSpecialFunctions \end{axiom} From unknown Thu Mar 24 11:16:59 -0600 2005 From: unknown Date: Thu, 24 Mar 2005 11:16:59 -0600 Subject: Icomplete gamma function is missing Message-ID: <20050324111659-0600@page.axiom-developer.org> In DoubleFloatSpecialFunctions, incomplete gamma function is missing. If someone implements it, it's possible to add SpecialFunctionCategory to the "Exports" of DoubleFloat (add all these functions... => I don't know why gamma is actually exported by DoubleFloat), unexpose DoubleFloatSpecialFunctions and may be SpecialFunction(Integer) will work as requested. The actual behavior is really annoying <br> Cheers From unknown Fri Aug 18 19:10:00 -0500 2006 From: unknown Date: Fri, 18 Aug 2006 19:10:00 -0500 Subject: = Message-ID: <20060818191000-0500@wiki.axiom-developer.org> Category: Axiom Library => building Axiom from source Severity: serious => normal Status: open => planned From unknown Fri Aug 18 19:10:38 -0500 2006 From: unknown Date: Fri, 18 Aug 2006 19:10:38 -0500 Subject: = Message-ID: <20060818191038-0500@wiki.axiom-developer.org> From greg Fri Aug 18 19:32:48 -0500 2006 From: greg Date: Fri, 18 Aug 2006 19:32:48 -0500 Subject: revert status Message-ID: <20060818193248-0500@wiki.axiom-developer.org> Category: building Axiom from source => Axiom Library Severity: normal => serious Status: planned => open
Original Issue Report
digamma 2
(1) |
Has to return digamma(2) (EXPR INT)
The statement of the issue is to terse and vague to be sure
what the author had in mind, but assuming that s/he expected
the result to be of type EXPR INT, here is how to see what is
going on. Use the option )set message selection on
to trace
how Axiom finds the signature of the appropriate digamma
function:
)set message selection on
digamma 2
Function Selection for digamma Arguments: PI
[1] signature: EXPR(INT) -> EXPR(INT) implemented: slot $$ from EXPR(INT) [2] signature: DFLOAT -> DFLOAT implemented: slot (DoubleFloat)(DoubleFloat) from DFSFUN [3] signature: COMPLEX(DFLOAT) -> COMPLEX(DFLOAT) implemented: slot (Complex (DoubleFloat))(Complex (DoubleFloat)) from DFSFUN
(2) |
Axiom finds 3 possible signatures and applies the first one because 2 can be coerced to DoubleFloat?. But we can ask Axiom to take the third option by either specifically treating the type of the input 2 as EXPR INT or by asking for something of type EXPR INT as the result.
digamma(2::EXPR INT)
Function Selection for digamma Arguments: EXPR(INT)
[1] signature: EXPR(INT) -> EXPR(INT) implemented: slot $$ from EXPR(INT)
(3) |
digamma(2)@(EXPR INT)
Function Selection for digamma Arguments: EXPR(INT) Target type: EXPR(INT) -> no appropriate digamma found in Integer
[1] signature: EXPR(INT) -> EXPR(INT) implemented: slot $$ from EXPR(INT)
(4) |
Of course as something of type EXPR INT this expression has no simplier representation.
Sorry to respond to this but in Axiom, all trigonometric, transcendental etc.. functions is returned in EXPR INT if there is no integer functions. I think that Axiom has to return digamma(2) and digamma(2.0) the SF result. This permit to work directly on expression. You can test some other symbolic CAS.But may be I'm wrong.
Please do not be "sorry to respond" - that is the purpose of this website!By the way, I think it would be polite (but it is not necessary) for you identify yourself by clicking on preferences rather than remaining anonymous.
What I think you mean is this: Why is the mode selection for the following pairs of expressions different?
)set message selection on
sin(2)
Function Selection for sin Arguments: PI -> no appropriate sin found in PositiveInteger -> no appropriate sin found in Integer -> no appropriate sin found in PositiveInteger -> no appropriate sin found in Integer
Modemaps from Associated Packages no modemaps
Remaining General Modemaps [1] D -> D from D if D has TRIGCAT
[1] signature: EXPR(INT) -> EXPR(INT) implemented: slot $$ from EXPR(INT)
(5) |
digamma(2)
Function Selection for digamma Arguments: PI
[1] signature: EXPR(INT) -> EXPR(INT) implemented: slot $$ from EXPR(INT) [2] signature: DFLOAT -> DFLOAT implemented: slot (DoubleFloat)(DoubleFloat) from DFSFUN [3] signature: COMPLEX(DFLOAT) -> COMPLEX(DFLOAT) implemented: slot (Complex (DoubleFloat))(Complex (DoubleFloat)) from DFSFUN
(6) |
and
sin(2.0)
Function Selection for float Arguments: (INT,INT, PI) Target type: FLOAT From: FLOAT
[1] signature: (INT,INT, PI) -> FLOAT implemented: slot $(Integer)(Integer)(PositiveInteger) from FLOAT
Function Selection for sin Arguments: FLOAT
[1] signature: FLOAT -> FLOAT implemented: slot $$ from FLOAT
(7) |
digamma(2.0)
Function Selection for float Arguments: (INT,INT, PI) Target type: FLOAT From: FLOAT
[1] signature: (INT,INT, PI) -> FLOAT implemented: slot $(Integer)(Integer)(PositiveInteger) from FLOAT
Function Selection for digamma Arguments: FLOAT -> no appropriate digamma found in Float -> no appropriate digamma found in Float
Modemaps from Associated Packages [1] Complex(DoubleFloat) -> Complex(DoubleFloat) from DoubleFloatSpecialFunctions [2] DoubleFloat -> DoubleFloat from DoubleFloatSpecialFunctions
[1] signature: DFLOAT -> DFLOAT implemented: slot (DoubleFloat)(DoubleFloat) from DFSFUN [2] signature: COMPLEX(DFLOAT) -> COMPLEX(DFLOAT) implemented: slot (Complex (DoubleFloat))(Complex (DoubleFloat)) from DFSFUN
(8) |
Since sin is defined in DoubleFloat? and digamma is defined in DoubleFloatSpecialFunctions? one should expect similar treatment.
)show DoubleFloat
DoubleFloat is a domain constructor Abbreviation for DoubleFloat is DFLOAT This constructor is exposed in this frame. ------------------------------- Operations -------------------------------- ?*? : (Fraction(Integer),%) -> % ?*? : (%, Fraction(Integer)) -> % ?*? : (%, %) -> % ?*? : (Integer, %) -> % ?*? : (PositiveInteger, %) -> % ?+? : (%, %) -> % ?-? : (%, %) -> % -? : % -> % ?/? : (%, Integer) -> % ?/? : (%, %) -> % ?<? : (%, %) -> Boolean ?<=? : (%, %) -> Boolean ?=? : (%, %) -> Boolean ?>? : (%, %) -> Boolean ?>=? : (%, %) -> Boolean Beta : (%, %) -> % D : % -> % D : (%, NonNegativeInteger) -> % Gamma : (%, %) -> % Gamma : % -> % OMwrite : (%, Boolean) -> String OMwrite : % -> String 1 : () -> % 0 : () -> % ?^? : (%, %) -> % ?^? : (%, Fraction(Integer)) -> % ?^? : (%, Integer) -> % ?^? : (%, PositiveInteger) -> % abs : % -> % acos : % -> % acosh : % -> % acot : % -> % acoth : % -> % acsc : % -> % acsch : % -> % airyAi : % -> % airyAiPrime : % -> % airyBi : % -> % airyBiPrime : % -> % angerJ : (%, %) -> % asec : % -> % asech : % -> % asin : % -> % asinh : % -> % associates? : (%, %) -> Boolean atan : (%, %) -> % atan : % -> % atanh : % -> % base : () -> PositiveInteger besselI : (%, %) -> % besselJ : (%, %) -> % besselK : (%, %) -> % besselY : (%, %) -> % bits : () -> PositiveInteger ceiling : % -> % coerce : Fraction(Integer) -> % coerce : Integer -> % coerce : Fraction(Integer) -> % coerce : % -> % coerce : Integer -> % coerce : % -> OutputForm convert : % -> InputForm convert : % -> Pattern(Float) convert : % -> DoubleFloat convert : % -> Float cos : % -> % cosh : % -> % cot : % -> % coth : % -> % csc : % -> % csch : % -> % differentiate : % -> % digamma : % -> % digits : () -> PositiveInteger ellipticE : (%, %) -> % ellipticE : % -> % ellipticF : (%, %) -> % ellipticK : % -> % ellipticPi : (%, %, %) -> % exp : % -> % exp1 : () -> % exponent : % -> Integer factor : % -> Factored(%) float : (Integer, Integer) -> % floor : % -> % fractionPart : % -> % gcd : List(%) -> % gcd : (%, %) -> % hankelH1 : (%, %) -> % hankelH2 : (%, %) -> % hash : % -> Integer hash : % -> SingleInteger inv : % -> % jacobiCn : (%, %) -> % jacobiDn : (%, %) -> % jacobiSn : (%, %) -> % jacobiTheta : (%, %) -> % kelvinBei : (%, %) -> % kelvinBer : (%, %) -> % kelvinKei : (%, %) -> % kelvinKer : (%, %) -> % kummerM : (%, %, %) -> % kummerU : (%, %, %) -> % lambertW : % -> % latex : % -> String lcm : List(%) -> % lcm : (%, %) -> % legendreP : (%, %, %) -> % legendreQ : (%, %, %) -> % lerchPhi : (%, %, %) -> % log : % -> % log10 : % -> % log2 : % -> % lommelS1 : (%, %, %) -> % lommelS2 : (%, %, %) -> % mantissa : % -> Integer max : (%, %) -> % min : (%, %) -> % negative? : % -> Boolean norm : % -> % nthRoot : (%, Integer) -> % one? : % -> Boolean order : % -> Integer pi : () -> % polygamma : (%, %) -> % polylog : (%, %) -> % positive? : % -> Boolean precision : () -> PositiveInteger prime? : % -> Boolean ?quo? : (%, %) -> % recip : % -> Union(%, "failed") ?rem? : (%, %) -> % retract : % -> Fraction(Integer) retract : % -> Integer riemannZeta : % -> % round : % -> % sample : () -> % sec : % -> % sech : % -> % sign : % -> Integer sin : % -> % sinh : % -> % sizeLess? : (%, %) -> Boolean smaller? : (%, %) -> Boolean sqrt : % -> % squareFree : % -> Factored(%) squareFreePart : % -> % struveH : (%, %) -> % struveL : (%, %) -> % tan : % -> % tanh : % -> % truncate : % -> % unit? : % -> Boolean unitCanonical : % -> % weberE : (%, %) -> % weierstrassP : (%, %, %) -> % weierstrassZeta : (%, %, %) -> % whittakerM : (%, %, %) -> % whittakerW : (%, %, %) -> % wholePart : % -> Integer zero? : % -> Boolean ?~=? : (%, %) -> Boolean ?*? : (NonNegativeInteger, %) -> % OMwrite : (OpenMathDevice, %, Boolean) -> Void OMwrite : (OpenMathDevice, %) -> Void ?^? : (%, NonNegativeInteger) -> % bits : PositiveInteger -> PositiveInteger if $ has ATARBPR characteristic : () -> NonNegativeInteger decreasePrecision : Integer -> PositiveInteger if $ has ATARBPR differentiate : (%, NonNegativeInteger) -> % digits : PositiveInteger -> PositiveInteger if $ has ATARBPR divide : (%, %) -> Record(quotient: %, remainder: %) doubleFloatFormat : String -> String euclideanSize : % -> NonNegativeInteger expressIdealMember : (List(%), %) -> Union(List(%), "failed") exquo : (%, %) -> Union(%, "failed") extendedEuclidean : (%, %, %) -> Union(Record(coef1: %, coef2: %), "failed") extendedEuclidean : (%, %) -> Record(coef1: %, coef2: %, generator: %) float : (Integer, Integer, PositiveInteger) -> % gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) hypergeometricF : (List(%), List(%), %) -> % if $ has RETRACT(INT) increasePrecision : Integer -> PositiveInteger if $ has ATARBPR max : () -> % if not(has($, arbitraryExponent)) and not(has($, arbitraryPrecision)) meijerG : (List(%), List(%), List(%), List(%), %) -> % if $ has RETRACT(INT) min : () -> % if not(has($, arbitraryExponent)) and not(has($, arbitraryPrecision)) multiEuclidean : (List(%), %) -> Union(List(%), "failed") patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) precision : PositiveInteger -> PositiveInteger if $ has ATARBPR principalIdeal : List(%) -> Record(coef: List(%), generator: %) rationalApproximation : (%, NonNegativeInteger, NonNegativeInteger) -> Fraction(Integer) rationalApproximation : (%, NonNegativeInteger) -> Fraction(Integer) retractIfCan : % -> Union(Fraction(Integer), "failed") retractIfCan : % -> Union(Integer, "failed") subtractIfCan : (%, %) -> Union(%, "failed") unitNormal : % -> Record(unit: %, canonical: %, associate: %) weierstrassPPrime : (%, %, %) -> % weierstrassSigma : (%, %, %) -> %
)show DoubleFloatSpecialFunctionsStatus: rejected => open
DoubleFloatSpecialFunctions is a package constructor Abbreviation for DoubleFloatSpecialFunctions is DFSFUN This constructor is exposed in this frame. ------------------------------- Operations -------------------------------- Gamma : DoubleFloat -> DoubleFloat Beta : (DoubleFloat,DoubleFloat) -> DoubleFloat Beta : (Complex(DoubleFloat), Complex(DoubleFloat)) -> Complex(DoubleFloat) Gamma : Complex(DoubleFloat) -> Complex(DoubleFloat) airyAi : Complex(DoubleFloat) -> Complex(DoubleFloat) airyAi : DoubleFloat -> DoubleFloat airyBi : DoubleFloat -> DoubleFloat airyBi : Complex(DoubleFloat) -> Complex(DoubleFloat) besselI : (DoubleFloat, DoubleFloat) -> DoubleFloat besselI : (Complex(DoubleFloat), Complex(DoubleFloat)) -> Complex(DoubleFloat) besselJ : (DoubleFloat, DoubleFloat) -> DoubleFloat besselJ : (Complex(DoubleFloat), Complex(DoubleFloat)) -> Complex(DoubleFloat) besselK : (DoubleFloat, DoubleFloat) -> DoubleFloat besselK : (Complex(DoubleFloat), Complex(DoubleFloat)) -> Complex(DoubleFloat) besselY : (DoubleFloat, DoubleFloat) -> DoubleFloat besselY : (Complex(DoubleFloat), Complex(DoubleFloat)) -> Complex(DoubleFloat) digamma : DoubleFloat -> DoubleFloat digamma : Complex(DoubleFloat) -> Complex(DoubleFloat) hypergeometric0F1 : (DoubleFloat, DoubleFloat) -> DoubleFloat hypergeometric0F1 : (Complex(DoubleFloat), Complex(DoubleFloat)) -> Complex(DoubleFloat) logGamma : DoubleFloat -> DoubleFloat logGamma : Complex(DoubleFloat) -> Complex(DoubleFloat) polygamma : (NonNegativeInteger, DoubleFloat) -> DoubleFloat polygamma : (NonNegativeInteger, Complex(DoubleFloat)) -> Complex(DoubleFloat)
domain
while DoubleFloatSpecialFunctions?
is a package
. It is possible to obtain some of the effectst that
you want by dropping the DoubleFloatSpecialFunctions? from the
list of exposed constructors.
)set expose drop constructor DoubleFloatSpecialFunctions
DoubleFloatSpecialFunctions is now explicitly hidden in frame initial
Then these are treated the same
sin(2)
Function Selection for sin Arguments: PI -> no appropriate sin found in PositiveInteger -> no appropriate sin found in Integer -> no appropriate sin found in PositiveInteger -> no appropriate sin found in Integer
Modemaps from Associated Packages no modemaps
Remaining General Modemaps [1] D -> D from D if D has TRIGCAT
[1] signature: EXPR(INT) -> EXPR(INT) implemented: slot $$ from EXPR(INT)
(9) |
digamma(2)
Function Selection for digamma Arguments: PI -> no appropriate digamma found in PositiveInteger -> no appropriate digamma found in Integer -> no appropriate digamma found in PositiveInteger -> no appropriate digamma found in Integer
Modemaps from Associated Packages no modemaps
Remaining General Modemaps [1] D -> D from D if D has SPFCAT
[1] signature: EXPR(INT) -> EXPR(INT) implemented: slot $$ from EXPR(INT)
(10) |
except now it is necessary to do a package call to evaluate it even for something that is a floating point value.
digamma(2.0)
Function Selection for float Arguments: (INT,INT, PI) Target type: FLOAT From: FLOAT
[1] signature: (INT,INT, PI) -> FLOAT implemented: slot $(Integer)(Integer)(PositiveInteger) from FLOAT
Function Selection for digamma Arguments: FLOAT -> no appropriate digamma found in Float -> no appropriate digamma found in Float
Modemaps from Associated Packages no modemaps
Remaining General Modemaps [1] D -> D from D if D has SPFCAT
[1] signature: EXPR(FLOAT) -> EXPR(FLOAT) implemented: slot $$ from EXPR(FLOAT)
(11) |
digamma(2.0)$DoubleFloatSpecialFunctions
Function Selection for float Arguments: (INT,INT, PI) Target type: FLOAT From: FLOAT
[1] signature: (INT,INT, PI) -> FLOAT implemented: slot $(Integer)(Integer)(PositiveInteger) from FLOAT
Function Selection for digamma Arguments: FLOAT From: DFSFUN
[1] signature: DFLOAT -> DFLOAT implemented: slot (DoubleFloat)(DoubleFloat) from DFSFUN [2] signature: COMPLEX(DFLOAT) -> COMPLEX(DFLOAT) implemented: slot (Complex (DoubleFloat))(Complex (DoubleFloat)) from DFSFUN
(12) |