login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for TwistedSnakeRelation revision 2 of 4

1 2 3 4
Editor: Bill Page
Time: 2011/05/08 15:36:51 GMT-7
Note: twist dimension or twist snake

changed:
-\begin{pspicture}(0,-0.82)(5.22,0.82)
-\psbezier[linewidth=0.04](0.0,0.0)(0.0,-0.8)(0.6,-0.8)(0.6,0.0)
-\psbezier[linewidth=0.04](0.6,0.0)(0.6,0.8)(1.2,0.8)(1.2,0.0)
-\psline[linewidth=0.04cm](0.0,0.0)(0.0,0.6)
-\psline[linewidth=0.04cm](1.2,0.0)(1.2,-0.6)
-\psline[linewidth=0.04cm](2.6,0.6)(2.6,-0.6)
-\psbezier[linewidth=0.04](5.2,0.0)(5.2,-0.8)(4.6,-0.8)(4.6,0.0)
-\psbezier[linewidth=0.04](4.6,0.0)(4.6,0.8)(4.0,0.8)(4.0,0.0)
-\psline[linewidth=0.04cm](5.2,0.0)(5.2,0.6)
-\psline[linewidth=0.04cm](4.0,0.0)(4.0,-0.6)
\begin{pspicture}(0,-1.22)(5.42,1.22)
\psbezier[linewidth=0.04](0.0,-0.4)(0.0,-1.2)(0.6,-1.2)(0.6,-0.4)
\psbezier[linewidth=0.04](0.6,0.4)(0.6,1.2)(1.4,1.2)(1.4,0.4)
\psline[linewidth=0.04cm](0.0,-0.4)(0.0,0.2)
\psline[linewidth=0.04cm](1.4,-0.4)(1.4,-1.0)
\psline[linewidth=0.04cm](2.6,0.2)(2.6,-1.0)
\psbezier[linewidth=0.04](5.4,-0.4)(5.4,-1.2)(4.8,-1.2)(4.8,-0.4)
\psbezier[linewidth=0.04](4.8,0.4)(4.8,1.2)(4.0,1.2)(4.0,0.4)
\psline[linewidth=0.04cm](5.4,-0.4)(5.4,0.2)
\psline[linewidth=0.04cm](4.0,-0.4)(4.0,-1.0)

changed:
-\rput(1.8948437,0.105){=}
\rput(1.8948437,-0.095){=}

changed:
-\rput(3.2948437,0.105){=}
\rput(3.2948437,-0.095){=}
\psbezier[linewidth=0.04,linestyle=dashed,dash=0.16cm 0.16cm](4.0,0.4)(4.0,-0.2)(4.8,0.2)(4.8,-0.4)
\psbezier[linewidth=0.04](4.8,0.4)(4.8,-0.2)(4.0,0.2)(4.0,-0.4)
\psbezier[linewidth=0.04,linestyle=dashed,dash=0.16cm 0.16cm](0.6,0.4)(0.6,-0.2)(1.4,0.2)(1.4,-0.4)
\psbezier[linewidth=0.04](1.4,0.4)(1.4,-0.2)(0.6,0.2)(0.6,-0.4)
\psline[linewidth=0.04cm](2.6,1.0)(2.6,0.2)
\psline[linewidth=0.04cm](5.4,1.0)(5.4,0.2)
\psline[linewidth=0.04cm](0.0,1.0)(0.0,0.2)

Non-degeneracy of the pairing (snake relation)

Ref:


\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-1.22)(5.42,1.22)
\psbezier[linewidth=0.04](0.0,-0.4)(0.0,-1.2)(0.6,-1.2)(0.6,-0.4)
\psbezier[linewidth=0.04](0.6,0.4)(0.6,1.2)(1.4,1.2)(1.4,0.4)
\psline[linewidth=0.04cm](0.0,-0.4)(0.0,0.2)
\psline[linewidth=0.04cm](1.4,-0.4)(1.4,-1.0)
\psline[linewidth=0.04cm](2.6,0.2)(2.6,-1.0)
\psbezier[linewidth=0.04](5.4,-0.4)(5.4,-1.2)(4.8,-1.2)(4.8,-0.4)
\psbezier[linewidth=0.04](4.8,0.4)(4.8,1.2)(4.0,1.2)(4.0,0.4)
\psline[linewidth=0.04cm](5.4,-0.4)(5.4,0.2)
\psline[linewidth=0.04cm](4.0,-0.4)(4.0,-1.0)
\usefont{T1}{ptm}{m}{n}
\rput(1.8948437,-0.095){=}
\usefont{T1}{ptm}{m}{n}
\rput(3.2948437,-0.095){=}
\psbezier[linewidth=0.04,linestyle=dashed,dash=0.16cm 0.16cm](4.0,0.4)(4.0,-0.2)(4.8,0.2)(4.8,-0.4)
\psbezier[linewidth=0.04](4.8,0.4)(4.8,-0.2)(4.0,0.2)(4.0,-0.4)
\psbezier[linewidth=0.04,linestyle=dashed,dash=0.16cm 0.16cm](0.6,0.4)(0.6,-0.2)(1.4,0.2)(1.4,-0.4)
\psbezier[linewidth=0.04](1.4,0.4)(1.4,-0.2)(0.6,0.2)(0.6,-0.4)
\psline[linewidth=0.04cm](2.6,1.0)(2.6,0.2)
\psline[linewidth=0.04cm](5.4,1.0)(5.4,0.2)
\psline[linewidth=0.04cm](0.0,1.0)(0.0,0.2)
\end{pspicture} 
}
 

We use the Axiom LinearOperator? library

axiom
)library CARTEN MONAL PROP LOP
CartesianTensor is now explicitly exposed in frame initial CartesianTensor will be automatically loaded when needed from /var/zope2/var/LatexWiki/CARTEN.NRLIB/CARTEN Monoidal is now explicitly exposed in frame initial Monoidal will be automatically loaded when needed from /var/zope2/var/LatexWiki/MONAL.NRLIB/MONAL Prop is now explicitly exposed in frame initial Prop will be automatically loaded when needed from /var/zope2/var/LatexWiki/PROP.NRLIB/PROP LinearOperator is now explicitly exposed in frame initial LinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/LOP.NRLIB/LOP

and convenient notation

axiom
macro Σ(x,i,n)==reduce(+,[x for i in n])
Type: Void
axiom
macro Ξ(f,i,n)==[f for i in n]
Type: Void
axiom
macro sb == subscript
Type: Void
axiom
macro sp == superscript
Type: Void

Let 𝐋 be the domain of 2-dimensional linear operators

axiom
dim:=2

\label{eq1}2(1)
Type: PositiveInteger?
axiom
macro ℒ == List
Type: Void
axiom
macro ℚ == Expression Integer
Type: Void
axiom
𝐋 := LinearOperator(OVAR ['1,'2], ℚ)

\label{eq2}\hbox{\axiomType{LinearOperator}\ } (\hbox{\axiomType{OrderedVariableList}\ } ([ 1, 2 ]) , \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Type
axiom
𝐞:ℒ 𝐋      := basisOut()

\label{eq3}\left[{|_{1}}, \:{|_{2}}\right](3)
Type: List(LinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))
axiom
𝐝:ℒ 𝐋      := basisIn()

\label{eq4}\left[{|_{\ }^{1}}, \:{|_{\ }^{2}}\right](4)
Type: List(LinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))
axiom
I:𝐋:=[1]   -- identity for composition

\label{eq5}{|_{1}^{1}}+{|_{2}^{2}}(5)
Type: LinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
X:𝐋:=[2,1] -- twist

\label{eq6}{|_{1 \  1}^{1 \  1}}+{|_{2 \  1}^{1 \  2}}+{|_{1 \  2}^{2 \  1}}+{|_{2 \  2}^{2 \  2}}(6)
Type: LinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))

Pairing

A scalar product (pairing) is represented by

axiom
U:=Σ(Σ(sp('u,[i,j])*𝐝.i*𝐝.j, i,1..dim), j,1..dim)

\label{eq7}{{u^{1, \: 1}}\ {|_{\ }^{1 \  1}}}+{{u^{1, \: 2}}\ {|_{\ }^{1 \  2}}}+{{u^{2, \: 1}}\ {|_{\ }^{2 \  1}}}+{{u^{2, \: 2}}\ {|_{\ }^{2 \  2}}}(7)
Type: LinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))

In general we do not require that it be symmetric.

Co-pairing

Solve the "twisted snake relation" as a system of linear equations.

axiom
Ω:𝐋:=Σ(Σ(sb('u,[i,j])*𝐞.i*𝐞.j, i,1..dim), j,1..dim)

\label{eq8}{{u_{1, \: 1}}\ {|_{1 \  1}}}+{{u_{1, \: 2}}\ {|_{1 \  2}}}+{{u_{2, \: 1}}\ {|_{2 \  1}}}+{{u_{2, \: 2}}\ {|_{2 \  2}}}(8)
Type: LinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
Í :=
  (  I Ω   ) /
  (  I X   ) /
  (   U I  )

\label{eq9}\begin{array}{@{}l}
\displaystyle
{{\left({{u^{1, \: 2}}\ {u_{1, \: 2}}}+{{u^{1, \: 1}}\ {u_{1, \: 1}}}\right)}\ {|_{1}^{1}}}+ 
\
\
\displaystyle
{{\left({{u^{1, \: 2}}\ {u_{2, \: 2}}}+{{u^{1, \: 1}}\ {u_{2, \: 1}}}\right)}\ {|_{2}^{1}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {u_{1, \: 2}}}+{{u^{2, \: 1}}\ {u_{1, \: 1}}}\right)}\ {|_{1}^{2}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {u_{2, \: 2}}}+{{u^{2, \: 1}}\ {u_{2, \: 1}}}\right)}\ {|_{2}^{2}}}
(9)
Type: LinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
Ì:=
  (   Ω I  ) /
  (   X I  ) /
  (  I U   )

\label{eq10}\begin{array}{@{}l}
\displaystyle
{{\left({{u^{2, \: 1}}\ {u_{2, \: 1}}}+{{u^{1, \: 1}}\ {u_{1, \: 1}}}\right)}\ {|_{1}^{1}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 1}}\ {u_{2, \: 2}}}+{{u^{1, \: 1}}\ {u_{1, \: 2}}}\right)}\ {|_{2}^{1}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {u_{2, \: 1}}}+{{u^{1, \: 2}}\ {u_{1, \: 1}}}\right)}\ {|_{1}^{2}}}+ 
\
\
\displaystyle
{{\left({{u^{2, \: 2}}\ {u_{2, \: 2}}}+{{u^{1, \: 2}}\ {u_{1, \: 2}}}\right)}\ {|_{2}^{2}}}
(10)
Type: LinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
equate(f,g)==map((x,y)+->(x=y),ravel f, ravel g);
Type: Void
axiom
eq1:=equate(Í,I)
axiom
Compiling function equate with type (LinearOperator(
      OrderedVariableList([1,2]),Expression(Integer)),LinearOperator(
      OrderedVariableList([1,2]),Expression(Integer))) -> List(Equation
      (Expression(Integer)))

\label{eq11}\begin{array}{@{}l}
\displaystyle
\left[{{{{u^{1, \: 2}}\ {u_{1, \: 2}}}+{{u^{1, \: 1}}\ {u_{1, \: 1}}}}= 1}, \:{{{{u^{1, \: 2}}\ {u_{2, \: 2}}}+{{u^{1, \: 1}}\ {u_{2, \: 1}}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{{{u^{2, \: 2}}\ {u_{1, \: 2}}}+{{u^{2, \: 1}}\ {u_{1, \: 1}}}}= 0}, \:{{{{u^{2, \: 2}}\ {u_{2, \: 2}}}+{{u^{2, \: 1}}\ {u_{2, \: 1}}}}= 1}\right] 
(11)
Type: List(Equation(Expression(Integer)))
axiom
eq2:=equate(Ì,I)

\label{eq12}\begin{array}{@{}l}
\displaystyle
\left[{{{{u^{2, \: 1}}\ {u_{2, \: 1}}}+{{u^{1, \: 1}}\ {u_{1, \: 1}}}}= 1}, \:{{{{u^{2, \: 1}}\ {u_{2, \: 2}}}+{{u^{1, \: 1}}\ {u_{1, \: 2}}}}= 0}, \: \right.
\
\
\displaystyle
\left.{{{{u^{2, \: 2}}\ {u_{2, \: 1}}}+{{u^{1, \: 2}}\ {u_{1, \: 1}}}}= 0}, \:{{{{u^{2, \: 2}}\ {u_{2, \: 2}}}+{{u^{1, \: 2}}\ {u_{1, \: 2}}}}= 1}\right] 
(12)
Type: List(Equation(Expression(Integer)))
axiom
snake:=solve(concat(eq1,eq2),concat Ξ(Ξ(sb('u,[i,j]), i,1..dim), j,1..dim));
Type: List(List(Equation(Expression(Integer))))
axiom
if #snake ~= 1 then error "no solution"
Type: Void
axiom
Ω:=eval(Ω,snake(1))

\label{eq13}\begin{array}{@{}l}
\displaystyle
{{{u^{2, \: 2}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}\ {|_{1 \  1}}}-{{{u^{2, \: 1}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}\ {|_{1 \  2}}}- 
\
\
\displaystyle
{{{u^{1, \: 2}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}\ {|_{2 \  1}}}+{{{u^{1, \: 1}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}\ {|_{2 \  2}}}
(13)
Type: LinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
matrix Ξ(Ξ(Ω/(𝐝.i*𝐝.j), i,1..dim), j,1..dim)

\label{eq14}\left[ 
\begin{array}{cc}
{{u^{2, \: 2}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}& -{{u^{1, \: 2}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}
\
-{{u^{2, \: 1}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}&{{u^{1, \: 1}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}
(14)
Type: Matrix(LinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))

This is equivalent to a matrix inverse (transposed!)

axiom
Um:=matrix Ξ(Ξ((𝐞.i*𝐞.j)/U, i,1..dim), j,1..dim)

\label{eq15}\left[ 
\begin{array}{cc}
{u^{1, \: 1}}&{u^{2, \: 1}}
\
{u^{1, \: 2}}&{u^{2, \: 2}}
(15)
Type: Matrix(LinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))
axiom
mU:=inverse map(retract,Um)

\label{eq16}\left[ 
\begin{array}{cc}
{{u^{2, \: 2}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}& -{{u^{2, \: 1}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}
\
-{{u^{1, \: 2}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}&{{u^{1, \: 1}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}
(16)
Type: Union(Matrix(Expression(Integer)),...)
axiom
Ωm:=Σ(Σ(mU(i,j)*(𝐞.i*𝐞.j), i,1..dim), j,1..dim)

\label{eq17}\begin{array}{@{}l}
\displaystyle
{{{u^{2, \: 2}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}\ {|_{1 \  1}}}-{{{u^{2, \: 1}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}\ {|_{1 \  2}}}- 
\
\
\displaystyle
{{{u^{1, \: 2}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}\ {|_{2 \  1}}}+{{{u^{1, \: 1}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}}\ {|_{2 \  2}}}
(17)
Type: LinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
-- compare
test(Ω=Ωm)

\label{eq18} \mbox{\rm true} (18)
Type: Boolean

Check that the twisted snake relation holds

axiom
test
  (  I Ω   )  /
  (  I X   )  /
  (   U I  )  =  I

\label{eq19} \mbox{\rm true} (19)
Type: Boolean
axiom
test
  (   Ω I  )  /
  (   X I  )  /
  (  I U   )  =  I

\label{eq20} \mbox{\rm true} (20)
Type: Boolean

Dimension

Since the "snake" is twisted, dimension is as expected.


\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(0.82,0.92)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(0.8,-0.9)(0.8,-0.1)
\psbezier[linewidth=0.04](0.0,0.1)(0.0,0.9)(0.8,0.9)(0.8,0.1)
\psline[linewidth=0.04cm](0.0,0.1)(0.0,-0.1)
\psline[linewidth=0.04cm](0.8,0.1)(0.8,-0.1)
\end{pspicture} 
}
 

axiom
d:=
    Ω /
    U

\label{eq21}2(21)
Type: LinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))

This "twisted dimension " depends on U!


\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-1.22)(0.82,1.22)
\psbezier[linewidth=0.04](0.0,-0.4)(0.0,-1.2)(0.8,-1.2)(0.8,-0.4)
\psbezier[linewidth=0.04](0.0,0.4)(0.0,1.2)(0.8,1.2)(0.8,0.4)
\psbezier[linewidth=0.04,linestyle=dashed,dash=0.16cm 0.16cm](0.0,0.4)(0.0,-0.2)(0.8,0.2)(0.8,-0.4)
\psbezier[linewidth=0.04](0.8,0.4)(0.8,-0.2)(0.0,0.2)(0.0,-0.4)
\end{pspicture} 
}
 
axiom
d':=
     Ω /
     X /
     U

\label{eq22}{{2 \ {u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{2, \: 1}}^2}-{{u^{1, \: 2}}^2}}\over{{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}}(22)
Type: LinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))