login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for The Algebra of Complex Numbers Is Frobenius In Many Ways revision 8 of 11

1 2 3 4 5 6 7 8 9 10 11
Editor: Bill Page
Time: 2011/05/25 13:46:37 GMT-7
Note: update

changed:
-macro Σ(x,f,i)==reduce(+,[x*f.i for i in 1..#f])
--- scripts
macro Σ(x,i,n)==reduce(+,[x for i in n])
-- list
macro Ξ(f,i,n)==[f for i in n]
-- subscript and superscripts

added:
macro ℒ == List

changed:
-𝐞:List 𝐋      := basisOut()
-𝐝:List 𝐋      := basisIn()
𝐞:ℒ 𝐋      := basisOut()
𝐝:ℒ 𝐋      := basisIn()

changed:
-V:𝐋:=ev(1) -- evalutation
-Λ:𝐋:=co(1) -- co-evalutation
-\end{axiom}
-
-Now generate structure constants for Quaternion Algebra
-
-The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.
V:𝐋:=ev(1) -- evaluation
Λ:𝐋:=co(1) -- co-evaluation
equate(eq)==map((x,y)+->(x=y),ravel lhs eq, ravel rhs eq);
\end{axiom}

Now generate structure constants for Complex Algebra

The basis consists of the real and imaginary units. We use complex multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.

added:
q:=sp('i,[2])

changed:
-B:List QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::List List ℚ)
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)

changed:
-M:Matrix QQ := matrix [[ B.i*B.j for i in 1..#B] for j in 1..#B]
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)

changed:
-S(y) == map(x +-> real(x/y),M)
S(y) == map(x +-> real real(x/y),M)

changed:
-ѕ :=map(S,B)::List List List ℚ
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ

changed:
-Y := Σ(Σ(Σ(ѕ(i)(k)(j), 𝐞,i), 𝐝,j), 𝐝,k)
-matrix [[ (𝐞.i,𝐞.j)/Y for i in 1..#𝐞] for j in 1..#𝐞]
-\end{axiom}
Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim)
arity Y
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)
\end{axiom}

changed:
-a:=Σ(sb('a,[i]), 𝐞,i)
-b:=Σ(sb('b,[i]), 𝐞,i)
a:=Σ(sb('a,[i])*𝐞.i, i,1..dim)
b:=Σ(sb('b,[i])*𝐞.i, i,1..dim)

changed:
-Multiplication of complex numbers is associative
-\begin{axiom}
-
Multiplication is Associative
\begin{axiom}

changed:
-
-\end{axiom}
-
-Cartan-Killing Trace Form
-\begin{axiom}
-
-Ũ:=
-  (  Y Λ  ) / _
-  (   Y I ) / _
-       V
-
-\end{axiom}
\end{axiom}

changed:
-U:=Σ(Σ(sp('u,[i,j]), 𝐝,i), 𝐝,j)
-\end{axiom}
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim)
\end{axiom}

changed:
-     (    Y I    ) /
-           U       -
-     (    I Y    ) /
     (    Y I    )  /
           U        -
     (    I Y    )  /

added:
The Cartan-Killing Trace
\begin{axiom}

Ú:=
   (  Y Λ  ) / _
   (   Y I ) / _
        V
Ù:=
   (  Λ Y  ) / _
   ( I Y   ) / _
      V

test(Ù=Ú)

\end{axiom}
forms a non-degenerate associative scalar product for Y
\begin{axiom}
Ũ := Ù
test
     (    Y I    )  /
           Ũ        =
     (    I Y    )  /
           Ũ
determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ũ), j,1..dim), i,1..dim)
\end{axiom}

General Solution


changed:
-J := jacobian(ravel ω,concat map(variables,ravel U)::List Symbol);
-u := transpose matrix [concat map(variables,ravel U)::List Symbol];
J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol];

changed:
-       map(variables,ravel U), entries Σ(sb('p,[i]), Ñ,i) )
-\end{axiom}
       map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )
\end{axiom}

changed:
-In two dimensions the pairing is necessarily symmetric!
In general the pairing is symmetric!

changed:
-matrix [[ (𝐞.i 𝐞.j)/Ų for i in 1..#𝐞] for j in 1..#𝐞]
-\end{axiom}
-
-This is the most general form of the "dot product" of two
-complex numbers
matrix Ξ(Ξ((𝐞.i 𝐞.j)/Ų, i,1..dim), j,1..dim)
\end{axiom}

This is the most general form of the "dot product" of two quaternions

added:
Cartan-Killing is a special case
\begin{axiom}
ck:=solve(equate(Ũ=Ų),Ξ(sb('p,[i]), i,1..#Ñ)).1
\end{axiom}


changed:
-Ů:=determinant [[ retract((𝐞.i * 𝐞.j)/Ų) for j in 1..#𝐞] for i in 1..#𝐞]
-factor Ů
-\end{axiom}
Ů:=determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ų), j,1..dim), i,1..dim)
factor(numer Ů)/factor(denom Ů)
\end{axiom}

changed:
-Ω:𝐋:=Σ(Σ(sb('u,[i,j]), 𝐞,i), 𝐞,j)
-s1:=(I*Ω)/(Ų*I);
-s2:=(Ω*I)/(I*Ų);
-equate(eq)==map((x,y)+->(x=y),ravel lhs eq, ravel rhs eq);
-snake:=solve(concat(equate(s1=I),equate(s2=I)), _
-             concat map(variables,ravel Ω));
Ω:𝐋:=Σ(Σ(script('u,[[i,j]])*𝐞.i*𝐞.j, i,1..dim), j,1..dim)
d1:=(I*Ω)/(Ų*I);
d2:=(Ω*I)/(I*Ų);
eq1:=equate(d1=I);
eq2:=equate(d2=I);
snake:=solve(concat(eq1,eq2),concat Ξ(Ξ(script('u,[[i,j]]), i,1..dim), j,1..dim));

changed:
-matrix [[ Ω/(𝐝.i*𝐝.j) for i in 1..#𝐝] for j in 1..#𝐝]
-\end{axiom}
matrix Ξ(Ξ(Ω/(𝐝.i*𝐝.j), i,1..dim), j,1..dim)
\end{axiom}

changed:
-Θ:𝐋:=
d:𝐋:=

changed:
-
-W:=
-  (Y,I) /
-    Ų
-
-λ:=
-  ( Ω,I,Ω ) /
-  (I, W ,I)
-
-\end{axiom}
-
-\begin{axiom}
W:=(Y,I)/Ų
λ:=(Ω,I,Ω)/(I,W,I)
\end{axiom}

\begin{axiom}

changed:
-Frobenius Condition
-\begin{axiom}
Frobenius Condition (fork)
\begin{axiom}


added:

The Cartan-Killing form makes H of the Frobenius condition idempotent
\begin{axiom}
test( eval(H,ck)=eval(H/H,ck) )
\end{axiom}

And it is unique.
\begin{axiom}
h1:=map(numer,ravel(H-H/H)::List FRAC POLY INT);
h2:=groebner h1
ck4:=solve(h2,[p[1],p[2]])
test( eval(H,ck4.2)=eval(H/H,ck4.2) )
determinant Ξ(Ξ(retract( (𝐞.i * 𝐞.j)/eval(Ų,ck4.2) ), j,1..dim), i,1..dim)
\end{axiom}

Handle
\begin{axiom}

Φ:𝐋 :=
         λ     /
         Y

\end{axiom}

The Cartan-Killing form makes Φ of the identity
\begin{axiom}
test( eval(Φ,ck)=I )
\end{axiom}
and it can be the identity in only this one way.
\begin{axiom}
solve(equate(Φ=I),[p[1],p[2]])
\end{axiom}

If handle is identity then fork is idempotent but the converse is not true
\begin{axiom}
Φ1:=map(numer,ravel(Φ-I)::List FRAC POLY INT);
Φ2:=groebner Φ1
in?(ideal h2, ideal Φ2)
in?(ideal Φ2, ideal h2)
\end{axiom}

added:
bi1:=map(numer,ravel(ΦΦ-H)::List FRAC POLY INT);
bi2:=groebner bi1

changed:
-i = Unit of the algebra
-\begin{axiom}
Scalars for figure 12 (only 1 non-zero for Cartan-Killing form)

\begin{axiom}

φφ:=          _
  (  Ω Ω  ) / _
  ( I X I ) / _
  (  Y Y  );
φφ1:=map((x:ℚ):ℚ+->numer x,φφ)
φφ2:=denom(ravel(φφ).1)
test(φφ=(1/φφ2)*φφ1)
eval(φφ,ck)
\end{axiom}

Definition 5

  i = Unit of the algebra

\begin{axiom}

changed:
-Handle
-\begin{axiom}
-
-Φ:𝐋 :=
-         λ     /
-         X     /
-         Y     
-
-\end{axiom}
-
-Definition 5
-
-  <center>Co-unit<pre>
-  i 
-  U
-  </pre></center>
-
-\begin{axiom}
-
-j:𝐋:=
-    (   i I   ) /
-         Ų 
-
-\end{axiom}
-
-\begin{axiom}
-i / j
-\end{axiom}
-
Co-unit

<center><pre>
i 
U
</pre></center>

\begin{axiom}

ι:𝐋:=
    (    i I   ) /
          Ų

\end{axiom}

changed:
-j  
ι  

changed:
-        j     =  Ų
-
-\end{axiom}
        ι     =  Ų

\end{axiom}

changed:
-ex1:=[q[0]=1,p[1]=0,p[2]=1]
ex1:=[q=1,p[1]=0,p[2]=1]

The Algebra of Complex Numbers Is Frobenius In Many Ways

Linear operators over a 2-dimensional vector space representing the algebra of complex numbers

Ref:

We need the Axiom LinearOperator? library.

axiom
)library CARTEN ARITY CMONAL CPROP CLOP CALEY
CartesianTensor is now explicitly exposed in frame initial CartesianTensor will be automatically loaded when needed from /var/zope2/var/LatexWiki/CARTEN.NRLIB/CARTEN Arity is now explicitly exposed in frame initial Arity will be automatically loaded when needed from /var/zope2/var/LatexWiki/ARITY.NRLIB/ARITY ClosedMonoidal is now explicitly exposed in frame initial ClosedMonoidal will be automatically loaded when needed from /var/zope2/var/LatexWiki/CMONAL.NRLIB/CMONAL ClosedProp is now explicitly exposed in frame initial ClosedProp will be automatically loaded when needed from /var/zope2/var/LatexWiki/CPROP.NRLIB/CPROP ClosedLinearOperator is now explicitly exposed in frame initial ClosedLinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/CLOP.NRLIB/CLOP CaleyDickson is now explicitly exposed in frame initial CaleyDickson will be automatically loaded when needed from /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY

Use the following macros for convenient notation

axiom
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
Type: Void
axiom
-- list
macro Ξ(f,i,n)==[f for i in n]
Type: Void
axiom
-- subscript and superscripts
macro sb == subscript
Type: Void
axiom
macro sp == superscript
Type: Void

𝐋 is the domain of 2-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.

axiom
dim:=2

\label{eq1}2(1)
Type: PositiveInteger?
axiom
macro ℒ == List
Type: Void
axiom
macro ℂ == CaleyDickson
Type: Void
axiom
macro ℚ == Expression Integer
Type: Void
axiom
𝐋 := ClosedLinearOperator(OVAR ['1,'2], ℚ)

\label{eq2}\hbox{\axiomType{ClosedLinearOperator}\ } (\hbox{\axiomType{OrderedVariableList}\ } ([ 1, 2 ]) , \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Type
axiom
𝐞:ℒ 𝐋      := basisOut()

\label{eq3}\left[{|_{\  1}}, \:{|_{\  2}}\right](3)
Type: List(ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))
axiom
𝐝:ℒ 𝐋      := basisIn()

\label{eq4}\left[{|^{\  1}}, \:{|^{\  2}}\right](4)
Type: List(ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))
axiom
I:𝐋:=[1]   -- identity for composition

\label{eq5}{|_{\  1}^{\  1}}+{|_{\  2}^{\  2}}(5)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
X:𝐋:=[2,1] -- twist

\label{eq6}{|_{\  1 \  1}^{\  1 \  1}}+{|_{\  2 \  1}^{\  1 \  2}}+{|_{\  1 \  2}^{\  2 \  1}}+{|_{\  2 \  2}^{\  2 \  2}}(6)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
V:𝐋:=ev(1) -- evaluation

\label{eq7}{|^{\  1 \  1}}+{|^{\  2 \  2}}(7)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
Λ:𝐋:=co(1) -- co-evaluation

\label{eq8}{|_{\  1 \  1}}+{|_{\  2 \  2}}(8)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
equate(eq)==map((x,y)+->(x=y),ravel lhs eq, ravel rhs eq);
Type: Void

Now generate structure constants for Complex Algebra

The basis consists of the real and imaginary units. We use complex multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.

Split-complex can be specified by Caley-Dickson parameter (q0 = -1)

axiom
--q:=1  -- split-complex
q:=sp('i,[2])

\label{eq9}i^{2}(9)
Type: Symbol
axiom
QQ := ℂ(ℚ,'i,q);
Type: Type

Basis: Each B.i is a quaternion number

axiom
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)

\label{eq10}\left[ 1, \: i \right](10)
Type: List(CaleyDickson?(Expression(Integer),i,*001i(2)))
axiom
-- Multiplication table:
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)

\label{eq11}\left[ 
\begin{array}{cc}
1 & i 
\
i & -{i^{2}}
(11)
Type: Matrix(CaleyDickson?(Expression(Integer),i,*001i(2)))
axiom
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real real(x/y),M)
Type: Void
axiom
-- The result is a nested list
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
axiom
Compiling function S with type CaleyDickson(Expression(Integer),i,
      *001i(2)) -> Matrix(Expression(Integer))

\label{eq12}\left[{\left[{\left[ 1, \: 0 \right]}, \:{\left[ 0, \: -{i^{2}}\right]}\right]}, \:{\left[{\left[ 0, \: 1 \right]}, \:{\left[ 1, \: 0 \right]}\right]}\right](12)
Type: List(List(List(Expression(Integer))))
axiom
-- structure constants form a tensor operator
Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim)

\label{eq13}{|_{\  1}^{\  1 \  1}}+{|_{\  2}^{\  1 \  2}}+{|_{\  2}^{\  2 \  1}}-{{i^{2}}\ {|_{\  1}^{\  2 \  2}}}(13)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
arity Y

\label{eq14}{+^2}\over +(14)
Type: ClosedProp?(ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))
axiom
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)

\label{eq15}\left[ 
\begin{array}{cc}
{|_{\  1}}&{|_{\  2}}
\
{|_{\  2}}& -{{i^{2}}\ {|_{\  1}}}
(15)
Type: Matrix(ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))

Multiplication of arbitrary quaternions a and b

axiom
a:=Σ(sb('a,[i])*𝐞.i, i,1..dim)

\label{eq16}{{a_{1}}\ {|_{\  1}}}+{{a_{2}}\ {|_{\  2}}}(16)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
b:=Σ(sb('b,[i])*𝐞.i, i,1..dim)

\label{eq17}{{b_{1}}\ {|_{\  1}}}+{{b_{2}}\ {|_{\  2}}}(17)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
(a*b)/Y

\label{eq18}{{\left(-{{i^{2}}\ {a_{2}}\ {b_{2}}}+{{a_{1}}\ {b_{1}}}\right)}\ {|_{\  1}}}+{{\left({{a_{1}}\ {b_{2}}}+{{a_{2}}\ {b_{1}}}\right)}\ {|_{\  2}}}(18)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))

Multiplication is Associative

axiom
test(
  ( I Y ) / _
  (  Y  ) = _
  ( Y I ) / _
  (  Y  ) )

\label{eq19} \mbox{\rm true} (19)
Type: Boolean

A scalar product is denoted by the (2,0)-tensor U = \{ u_{ij} \}

axiom
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim)

\label{eq20}{{u^{1, \: 1}}\ {|^{\  1 \  1}}}+{{u^{1, \: 2}}\ {|^{\  1 \  2}}}+{{u^{2, \: 1}}\ {|^{\  2 \  1}}}+{{u^{2, \: 2}}\ {|^{\  2 \  2}}}(20)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))

Definition 1

We say that the scalar product is associative if the tensor equation holds:

    Y   =   Y
     U     U

In other words, if the (3,0)-tensor:


\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){-}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture} 
}
 


\label{eq21}
  \Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \}
  (21)
(three-point function) is zero.

Using the LinearOperator? domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.

axiom
ω:𝐋 :=
     (    Y I    )  /
           U        -
     (    I Y    )  /
           U

\label{eq22}\begin{array}{@{}l}
\displaystyle
{{\left({u^{2, \: 1}}-{u^{1, \: 2}}\right)}\ {|^{\  1 \  2 \  1}}}+{{\left({u^{2, \: 2}}+{{i^{2}}\ {u^{1, \: 1}}}\right)}\ {|^{\  1 \  2 \  2}}}+ 
\
\
\displaystyle
{{\left(-{u^{2, \: 2}}-{{i^{2}}\ {u^{1, \: 1}}}\right)}\ {|^{\  2 \  2 \  1}}}+{{\left({{i^{2}}\ {u^{2, \: 1}}}-{{i^{2}}\ {u^{1, \: 2}}}\right)}\ {|^{\  2 \  2 \  2}}}
(22)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))

Definition 2

An algebra with a non-degenerate associative scalar product is called a [Frobenius Algebra]?.

The Cartan-Killing Trace

axiom
Ú:=
   (  Y Λ  ) / _
   (   Y I ) / _
        V

\label{eq23}{2 \ {|^{\  1 \  1}}}-{2 \ {i^{2}}\ {|^{\  2 \  2}}}(23)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
Ù:=
   (  Λ Y  ) / _
   ( I Y   ) / _
      V

\label{eq24}{2 \ {|^{\  1 \  1}}}-{2 \ {i^{2}}\ {|^{\  2 \  2}}}(24)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
test(Ù=Ú)

\label{eq25} \mbox{\rm true} (25)
Type: Boolean

forms a non-degenerate associative scalar product for Y

axiom
Ũ := Ù

\label{eq26}{2 \ {|^{\  1 \  1}}}-{2 \ {i^{2}}\ {|^{\  2 \  2}}}(26)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
test
     (    Y I    )  /
           Ũ        =
     (    I Y    )  /
           Ũ

\label{eq27} \mbox{\rm true} (27)
Type: Boolean
axiom
determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ũ), j,1..dim), i,1..dim)

\label{eq28}-{4 \ {i^{2}}}(28)
Type: Expression(Integer)

General Solution

We may consider the problem where multiplication Y is given, and look for all associative scalar products U = U(Y)

This problem can be solved using linear algebra.

axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame initial J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
Type: Matrix(Expression(Integer))
axiom
u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol];
Type: Matrix(Polynomial(Integer))
axiom
J::OutputForm * u::OutputForm = 0

\label{eq29}\begin{array}{@{}l}
\displaystyle
{{\left[ 
\begin{array}{cccc}
0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 
\
0 & - 1 & 1 & 0 
\
{i^{2}}& 0 & 0 & 1 
\
0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 
\
-{i^{2}}& 0 & 0 & - 1 
\
0 & -{i^{2}}&{i^{2}}& 0 
(29)
Type: Equation(OutputForm?)
axiom
nrows(J),ncols(J)

\label{eq30}\left[ 8, \: 4 \right](30)
Type: Tuple(PositiveInteger?)

The matrix J transforms the coefficients of the tensor U into coefficients of the tensor \Phi. We are looking for the general linear family of tensors U=U(Y,p_i) such that J transforms U into \Phi=0 for any such U.

If the null space of the J matrix is not empty we can use the basis to find all non-trivial solutions for U:

axiom
Ñ:=nullSpace(J)

\label{eq31}\left[{\left[ 0, \: 1, \: 1, \: 0 \right]}, \:{\left[ -{1 \over{i^{2}}}, \: 0, \: 0, \: 1 \right]}\right](31)
Type: List(Vector(Expression(Integer)))
axiom
ℰ:=map((x,y)+->x=y, concat
       map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )

\label{eq32}\left[{{u^{1, \: 1}}= -{{p_{2}}\over{i^{2}}}}, \:{{u^{1, \: 2}}={p_{1}}}, \:{{u^{2, \: 1}}={p_{1}}}, \:{{u^{2, \: 2}}={p_{2}}}\right](32)
Type: List(Equation(Expression(Integer)))

This defines a family of pre-Frobenius algebras:

axiom
zero? eval(ω,ℰ)

\label{eq33} \mbox{\rm true} (33)
Type: Boolean

In general the pairing is symmetric!

axiom
Ų:𝐋 := eval(U,ℰ)

\label{eq34}-{{{p_{2}}\over{i^{2}}}\ {|^{\  1 \  1}}}+{{p_{1}}\ {|^{\  1 \  2}}}+{{p_{1}}\ {|^{\  2 \  1}}}+{{p_{2}}\ {|^{\  2 \  2}}}(34)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
matrix Ξ(Ξ((𝐞.i 𝐞.j)/Ų, i,1..dim), j,1..dim)

\label{eq35}\left[ 
\begin{array}{cc}
-{{p_{2}}\over{i^{2}}}&{p_{1}}
\
{p_{1}}&{p_{2}}
(35)
Type: Matrix(ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))

This is the most general form of the "dot product" of two quaternions

axiom
(a*b)/Ų

\label{eq36}{{{\left({{i^{2}}\ {a_{2}}\ {b_{2}}}-{{a_{1}}\ {b_{1}}}\right)}\ {p_{2}}}+{{\left({{i^{2}}\ {a_{1}}\ {b_{2}}}+{{i^{2}}\ {a_{2}}\ {b_{1}}}\right)}\ {p_{1}}}}\over{i^{2}}(36)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
(a*a)/Ų

\label{eq37}{{{\left({{i^{2}}\ {{a_{2}}^2}}-{{a_{1}}^2}\right)}\ {p_{2}}}+{2 \ {i^{2}}\ {a_{1}}\ {a_{2}}\ {p_{1}}}}\over{i^{2}}(37)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))

Cartan-Killing is a special case

axiom
ck:=solve(equate(Ũ=Ų),Ξ(sb('p,[i]), i,1..#Ñ)).1
axiom
Compiling function equate with type Equation(ClosedLinearOperator(
      OrderedVariableList([1,2]),Expression(Integer))) -> List(Equation
      (Expression(Integer)))

\label{eq38}\left[{{p_{1}}= 0}, \:{{p_{2}}= -{2 \ {i^{2}}}}\right](38)
Type: List(Equation(Expression(Integer)))

The scalar product must be non-degenerate:

axiom
Ů:=determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ų), j,1..dim), i,1..dim)

\label{eq39}{-{{p_{2}}^2}-{{i^{2}}\ {{p_{1}}^2}}}\over{i^{2}}(39)
Type: Expression(Integer)
axiom
factor(numer Ů)/factor(denom Ů)

\label{eq40}-{{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}\over{i^{2}}}(40)
Type: Fraction(Factored(SparseMultivariatePolynomial?(Integer,Kernel(Expression(Integer)))))

Definition 3

Co-pairing

Solve the [Snake Relation]? as a system of linear equations.

axiom
Ω:𝐋:=Σ(Σ(script('u,[[i,j]])*𝐞.i*𝐞.j, i,1..dim), j,1..dim)

\label{eq41}{{u_{1, \: 1}}\ {|_{\  1 \  1}}}+{{u_{1, \: 2}}\ {|_{\  1 \  2}}}+{{u_{2, \: 1}}\ {|_{\  2 \  1}}}+{{u_{2, \: 2}}\ {|_{\  2 \  2}}}(41)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
d1:=(I*Ω)/(Ų*I);
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
d2:=(Ω*I)/(I*Ų);
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
eq1:=equate(d1=I);
Type: List(Equation(Expression(Integer)))
axiom
eq2:=equate(d2=I);
Type: List(Equation(Expression(Integer)))
axiom
snake:=solve(concat(eq1,eq2),concat Ξ(Ξ(script('u,[[i,j]]), i,1..dim), j,1..dim));
Type: List(List(Equation(Expression(Integer))))
axiom
if #snake ~= 1 then error "no solution"
Type: Void
axiom
Ω:=eval(Ω,snake(1))

\label{eq42}\begin{array}{@{}l}
\displaystyle
-{{{{i^{2}}\ {p_{2}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1 \  1}}}+{{{{i^{2}}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1 \  2}}}+ 
\
\
\displaystyle
{{{{i^{2}}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2 \  1}}}+{{{p_{2}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2 \  2}}}
(42)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
matrix Ξ(Ξ(Ω/(𝐝.i*𝐝.j), i,1..dim), j,1..dim)

\label{eq43}\left[ 
\begin{array}{cc}
-{{{i^{2}}\ {p_{2}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}&{{{i^{2}}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}
\
{{{i^{2}}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}&{{p_{2}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}
(43)
Type: Matrix(ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))

Check "dimension" and the snake relations.

axiom
d:𝐋:=
       Ω    /
       X    /
       Ų

\label{eq44}2(44)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
test
    (    I Ω     )  /
    (     Ų I    )  =  I

\label{eq45} \mbox{\rm true} (45)
Type: Boolean
axiom
test
    (     Ω I    )  /
    (    I Ų     )  =  I

\label{eq46} \mbox{\rm true} (46)
Type: Boolean

Definition 4

Co-algebra

Compute the "three-point" function and use it to define co-multiplication.

axiom
W:=(Y,I)/Ų

\label{eq47}\begin{array}{@{}l}
\displaystyle
-{{{p_{2}}\over{i^{2}}}\ {|^{\  1 \  1 \  1}}}+{{p_{1}}\ {|^{\  1 \  1 \  2}}}+{{p_{1}}\ {|^{\  1 \  2 \  1}}}+{{p_{2}}\ {|^{\  1 \  2 \  2}}}+ 
\
\
\displaystyle
{{p_{1}}\ {|^{\  2 \  1 \  1}}}+{{p_{2}}\ {|^{\  2 \  1 \  2}}}+{{p_{2}}\ {|^{\  2 \  2 \  1}}}-{{i^{2}}\ {p_{1}}\ {|^{\  2 \  2 \  2}}}
(47)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
λ:=(Ω,I,Ω)/(I,W,I)

\label{eq48}\begin{array}{@{}l}
\displaystyle
-{{{{i^{2}}\ {p_{2}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1 \  1}^{\  1}}}+{{{{i^{2}}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1 \  2}^{\  1}}}+ 
\
\
\displaystyle
{{{{i^{2}}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2 \  1}^{\  1}}}+{{{p_{2}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2 \  2}^{\  1}}}- 
\
\
\displaystyle
{{{{{i^{2}}^2}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1 \  1}^{\  2}}}-{{{{i^{2}}\ {p_{2}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1 \  2}^{\  2}}}- 
\
\
\displaystyle
{{{{i^{2}}\ {p_{2}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2 \  1}^{\  2}}}+{{{{i^{2}}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2 \  2}^{\  2}}}
(48)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))

axiom
test
     (    I Ω     )  /
     (     Y I    )  =  λ

\label{eq49} \mbox{\rm true} (49)
Type: Boolean
axiom
test
     (     Ω I    )  /
     (    I Y     )  =  λ

\label{eq50} \mbox{\rm true} (50)
Type: Boolean

Co-associativity

axiom
test(
  (  λ  ) / _
  ( I λ ) = _
  (  λ  ) / _
  ( λ I ) )

\label{eq51} \mbox{\rm true} (51)
Type: Boolean

Frobenius Condition (fork)

axiom
H :=
         Y    /
         λ

\label{eq52}\begin{array}{@{}l}
\displaystyle
-{{{{i^{2}}\ {p_{2}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1 \  1}^{\  1 \  1}}}+{{{{i^{2}}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1 \  2}^{\  1 \  1}}}+ 
\
\
\displaystyle
{{{{i^{2}}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2 \  1}^{\  1 \  1}}}+{{{p_{2}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2 \  2}^{\  1 \  1}}}- 
\
\
\displaystyle
{{{{{i^{2}}^2}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1 \  1}^{\  1 \  2}}}-{{{{i^{2}}\ {p_{2}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1 \  2}^{\  1 \  2}}}- 
\
\
\displaystyle
{{{{i^{2}}\ {p_{2}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2 \  1}^{\  1 \  2}}}+{{{{i^{2}}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2 \  2}^{\  1 \  2}}}- 
\
\
\displaystyle
{{{{{i^{2}}^2}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1 \  1}^{\  2 \  1}}}-{{{{i^{2}}\ {p_{2}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1 \  2}^{\  2 \  1}}}- 
\
\
\displaystyle
{{{{i^{2}}\ {p_{2}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2 \  1}^{\  2 \  1}}}+{{{{i^{2}}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2 \  2}^{\  2 \  1}}}+ 
\
\
\displaystyle
{{{{{i^{2}}^2}\ {p_{2}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1 \  1}^{\  2 \  2}}}-{{{{{i^{2}}^2}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1 \  2}^{\  2 \  2}}}- 
\
\
\displaystyle
{{{{{i^{2}}^2}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2 \  1}^{\  2 \  2}}}-{{{{i^{2}}\ {p_{2}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2 \  2}^{\  2 \  2}}}
(52)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
test
     (   λ I   )  /
     (  I Y    )  =  H

\label{eq53} \mbox{\rm true} (53)
Type: Boolean
axiom
test
     (   I λ   )  /
     (    Y I  )  =  H

\label{eq54} \mbox{\rm true} (54)
Type: Boolean

The Cartan-Killing form makes H of the Frobenius condition idempotent

axiom
test( eval(H,ck)=eval(H/H,ck) )

\label{eq55} \mbox{\rm true} (55)
Type: Boolean

And it is unique.

axiom
h1:=map(numer,ravel(H-H/H)::List FRAC POLY INT);
Type: List(Polynomial(Integer))
axiom
h2:=groebner h1

\label{eq56}\begin{array}{@{}l}
\displaystyle
\left[{{{p_{2}}^3}+{2 \ {i^{2}}\ {{p_{2}}^2}}+{{i^{2}}\ {{p_{1}}^2}\ {p_{2}}}-{2 \ {{i^{2}}^2}\ {{p_{1}}^2}}}, \: \right.
\
\
\displaystyle
\left.{{{i^{2}}\ {p_{1}}\ {{p_{2}}^2}}+{4 \ {{i^{2}}^2}\ {p_{1}}\ {p_{2}}}+{{{i^{2}}^2}\ {{p_{1}}^3}}}, \:{{{i^{2}}^3}\ {p_{1}}\ {p_{2}}}, \:{{{i^{2}}^4}\ {{p_{1}}^3}}\right] 
(56)
Type: List(Polynomial(Integer))
axiom
ck4:=solve(h2,[p[1],p[2]])

\label{eq57}\left[{\left[{{p_{1}}= 0}, \:{{p_{2}}= 0}\right]}, \:{\left[{{p_{1}}= 0}, \:{{p_{2}}= -{2 \ {i^{2}}}}\right]}\right](57)
Type: List(List(Equation(Fraction(Polynomial(Integer)))))
axiom
test( eval(H,ck4.2)=eval(H/H,ck4.2) )

\label{eq58} \mbox{\rm true} (58)
Type: Boolean
axiom
determinant Ξ(Ξ(retract( (𝐞.i * 𝐞.j)/eval(Ų,ck4.2) ), j,1..dim), i,1..dim)

\label{eq59}-{4 \ {i^{2}}}(59)
Type: Expression(Integer)

Handle

axiom
Φ:𝐋 :=
         λ     /
         Y

\label{eq60}\begin{array}{@{}l}
\displaystyle
-{{{2 \ {i^{2}}\ {p_{2}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1}^{\  1}}}+{{{2 \ {i^{2}}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2}^{\  1}}}- 
\
\
\displaystyle
{{{2 \ {{i^{2}}^2}\ {p_{1}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  1}^{\  2}}}-{{{2 \ {i^{2}}\ {p_{2}}}\over{{{p_{2}}^2}+{{i^{2}}\ {{p_{1}}^2}}}}\ {|_{\  2}^{\  2}}}
(60)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))

The Cartan-Killing form makes Φ of the identity

axiom
test( eval(Φ,ck)=I )

\label{eq61} \mbox{\rm true} (61)
Type: Boolean

and it can be the identity in only this one way.

axiom
solve(equate(Φ=I),[p[1],p[2]])

\label{eq62}\left[{\left[{{p_{1}}= 0}, \:{{p_{2}}= -{2 \ {i^{2}}}}\right]}\right](62)
Type: List(List(Equation(Expression(Integer))))

If handle is identity then fork is idempotent but the converse is not true

axiom
Φ1:=map(numer,ravel(Φ-I)::List FRAC POLY INT);
Type: List(Polynomial(Integer))
axiom
Φ2:=groebner Φ1

\label{eq63}\left[{{{p_{2}}^2}+{2 \ {i^{2}}\ {p_{2}}}}, \:{{i^{2}}\ {p_{1}}}\right](63)
Type: List(Polynomial(Integer))
axiom
in?(ideal h2, ideal Φ2)

\label{eq64} \mbox{\rm true} (64)
Type: Boolean
axiom
in?(ideal Φ2, ideal h2)

\label{eq65} \mbox{\rm false} (65)
Type: Boolean

Bi-algebra conditions

axiom
ΦΦ:=         _
  (  λ λ  ) / _
  ( I X I ) / _
  (  Y Y  );
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
test( H/H = ΦΦ )

\label{eq66} \mbox{\rm true} (66)
Type: Boolean

The Cartan Killing form is a bi-algebra

axiom
bi1:=map(numer,ravel(ΦΦ-H)::List FRAC POLY INT);
Type: List(Polynomial(Integer))
axiom
bi2:=groebner bi1

\label{eq67}\begin{array}{@{}l}
\displaystyle
\left[{{{p_{2}}^3}+{2 \ {i^{2}}\ {{p_{2}}^2}}+{{i^{2}}\ {{p_{1}}^2}\ {p_{2}}}-{2 \ {{i^{2}}^2}\ {{p_{1}}^2}}}, \: \right.
\
\
\displaystyle
\left.{{{i^{2}}\ {p_{1}}\ {{p_{2}}^2}}+{4 \ {{i^{2}}^2}\ {p_{1}}\ {p_{2}}}+{{{i^{2}}^2}\ {{p_{1}}^3}}}, \:{{{i^{2}}^3}\ {p_{1}}\ {p_{2}}}, \:{{{i^{2}}^4}\ {{p_{1}}^3}}\right] 
(67)
Type: List(Polynomial(Integer))
axiom
b:=solve( equate(ΦΦ=H), [sb('p,[i]) for i in 1..#Ñ] )

\label{eq68}\left[{\left[{{p_{1}}= 0}, \:{{p_{2}}= -{2 \ {i^{2}}}}\right]}\right](68)
Type: List(List(Equation(Expression(Integer))))
axiom
test(eval(Ų, b.1)=Ũ)

\label{eq69} \mbox{\rm true} (69)
Type: Boolean

Scalars for figure 12 (only 1 non-zero for Cartan-Killing form)

axiom
φφ:=          _
  (  Ω Ω  ) / _
  ( I X I ) / _
  (  Y Y  );
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
φφ1:=map((x:ℚ):ℚ+->numer x,φφ)

\label{eq70}\begin{array}{@{}l}
\displaystyle
{{\left({2 \ {{i^{2}}^2}\ {{p_{2}}^2}}-{2 \ {{i^{2}}^3}\ {{p_{1}}^2}}\right)}\ {|_{\  1 \  1}}}-{4 \ {{i^{2}}^2}\ {p_{1}}\ {p_{2}}\ {|_{\  1 \  2}}}- 
\
\
\displaystyle
{4 \ {{i^{2}}^2}\ {p_{1}}\ {p_{2}}\ {|_{\  2 \  1}}}+{{\left(-{2 \ {i^{2}}\ {{p_{2}}^2}}+{2 \ {{i^{2}}^2}\ {{p_{1}}^2}}\right)}\ {|_{\  2 \  2}}}
(70)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
φφ2:=denom(ravel(φφ).1)

\label{eq71}{{p_{2}}^4}+{2 \ {i^{2}}\ {{p_{1}}^2}\ {{p_{2}}^2}}+{{{i^{2}}^2}\ {{p_{1}}^4}}(71)
Type: SparseMultivariatePolynomial?(Integer,Kernel(Expression(Integer)))
axiom
test(φφ=(1/φφ2)*φφ1)

\label{eq72} \mbox{\rm true} (72)
Type: Boolean
axiom
eval(φφ,ck)

\label{eq73}{{1 \over 2}\ {|_{\  1 \  1}}}-{{1 \over{2 \ {i^{2}}}}\ {|_{\  2 \  2}}}(73)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))

Definition 5

i = Unit of the algebra

axiom
i:=𝐞.1

\label{eq74}|_{\  1}(74)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
test
         i     /
         λ     =    Ω

\label{eq75} \mbox{\rm true} (75)
Type: Boolean

Co-unit

i 
U

axiom
ι:𝐋:=
    (    i I   ) /
          Ų

\label{eq76}-{{{p_{2}}\over{i^{2}}}\ {|^{\  1}}}+{{p_{1}}\ {|^{\  2}}}(76)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))

Y=U
ι  
axiom
test
        Y     /
        ι     =  Ų

\label{eq77} \mbox{\rm true} (77)
Type: Boolean

For example:

axiom
ex1:=[q=1,p[1]=0,p[2]=1]

\label{eq78}\left[{{i^{2}}= 1}, \:{{p_{1}}= 0}, \:{{p_{2}}= 1}\right](78)
Type: List(Equation(Polynomial(Integer)))
axiom
Ų0:𝐋  :=eval(Ų,ex1)

\label{eq79}-{|^{\  1 \  1}}+{|^{\  2 \  2}}(79)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
Ω0:𝐋  :=eval(Ω,ex1)$𝐋

\label{eq80}-{|_{\  1 \  1}}+{|_{\  2 \  2}}(80)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
λ0:𝐋  :=eval(λ,ex1)$𝐋

\label{eq81}-{|_{\  1 \  1}^{\  1}}+{|_{\  2 \  2}^{\  1}}-{|_{\  1 \  2}^{\  2}}-{|_{\  2 \  1}^{\  2}}(81)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
Φ0:𝐋 :=eval(Φ,ex1)$𝐋

\label{eq82}-{2 \ {|_{\  1}^{\  1}}}-{2 \ {|_{\  2}^{\  2}}}(82)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))