login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox Sedenion Algebra is Frobenius In Just One Way revision 1 of 5

1 2 3 4 5
Editor: page
Time: 2011/04/08 10:58:53 GMT-7
Note: new

changed:
-
Sedenion Algebra is Frobenius in just one way!

  16-dimensional vector space representing Sedenion Algebra

Ref: http://en.wikipedia.org/wiki/Sedenion

\begin{axiom}
)set output tex off
)set output algebra on
\end{axiom}
\begin{axiom}
dim:=16
R ==> EXPR INT
T ==> CartesianTensor(1,dim,EXPR INT)
X:List T := [unravel [(i=j => 1;0) for j in 1..dim] for i in 1..dim]
X(1),X(2)
\end{axiom}

Generate structure constants for Sedenion Algebra (the Caley-Dickson way)

Ref: http://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction
\begin{axiom}
O ==> Octonion R
SED ==> DirectProduct(2,O)
--B0:=map(x+->seden(x.1,x.2,x.3,x.4,x.5,x.6,x.7,x.8,x.9,x.10,x.11,x.12,x.13,x.14,x.15,x.16),1$SQMATRIX(dim,R)::List List R)
pair(x:O,y:O):SED==directProduct vector [x,y]
caleyOne:=pair(1,0)
B:=map(x+->pair(octon(x.1,x.2,x.3,x.4,x.5,x.6,x.7,x.8),octon(x.9,x.10,x.11,x.12,x.13,x.14,x.15,x.16)),1$SQMATRIX(dim,R)::List List R)
\end{axiom}
\begin{axiom}
caleyMul(x:SED,y:SED):SED == pair((x.1)*(y.1) - conjugate(y.2)*(x.2), (y.2)*(x.1) + (x.2)*conjugate(y.1))
caleyMul(caleyOne,caleyOne)
--M0:=matrix [[B0.i*B0.j for j in 1..dim] for i in 1..dim]  
M:=matrix [[caleyMul(B.i,B.j) for j in 1..dim] for i in 1..dim]
\end{axiom}
\begin{axiom}
caleyConj(x:SED):SED == pair(conjugate(x.1), -x.2)
caleyInv(x:SED):SED == inv(caleyMul(caleyConj x,x).1) * caleyConj(x)
--S0(y)==map(x+->(x*inv(y)=1 or x*inv(y)=-1 => x*inv(y);0),M0)
--S0(B0.1)
S(y)==map(x+->(caleyMul(x,caleyInv y)=caleyOne => 1;caleyMul(x,caleyInv y)=-caleyOne => -1;0),M)
S(B.1)
--Yg0:T:=unravel concat concat(map(S0,B0)::List List List R);
Yg:T:=unravel concat concat(map(S,B)::List List List R)
test(Yg0=Yg)
\end{axiom}

A scalar product is denoted by the (2,0)-tensor
$U = \{ u_{ij} \}$
\begin{axiom}
U:T := unravel(concat
  [[script(u,[[],[j,i]])
    for i in 1..dim]
      for j in 1..dim]
        );
\end{axiom}
Definition 1

  We say that the scalar product is *associative* if the tensor
  equation holds::

    Y   =   Y
     U     U

  In other words, if the (3,0)-tensor::

    i  j  k   i  j  k   i  j  k
     \ | /     \/  /     \  \/
      \|/   =   \ /   -   \ /
       0         0         0

  \begin{equation}
  \Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \}
  \end{equation}
  (three-point function) is zero.

\begin{axiom}
ω := reindex(reindex(U,[2,1])*reindex(Yg,[1,3,2]),[3,2,1])-U*Yg;
\end{axiom}
Definition 2

  An algebra with a non-degenerate associative scalar product
  is called *pre-Frobenius*.

We may consider the problem where multiplication Y is given,
and look for all associative scalar products $U = U(Y)$ 

This problem can be solved using linear algebra.
\begin{axiom}
)expose MCALCFN
J := jacobian(ravel ω,concat(map(variables,ravel U))::List Symbol);
uu := transpose matrix [concat(map(variables,ravel(U)))::List Symbol];
J::OutputForm * uu::OutputForm = 0;
nrows(J)
ncols(J)
\end{axiom}
The matrix 'J' transforms the coefficients of the tensor $U$
into coefficients of the tensor $\Phi$. We are looking for
the general linear family of tensors $U=U(Y,p_i)$ such that
'J' transforms $U$ into $\Phi=0$ for any such $U$.

If the null space of the 'J' matrix is not empty we can use
the basis to find all non-trivial solutions for U:
\begin{axiom}
NJ:=nullSpace(J)
SS:=map((x,y)+->x=y,concat map(variables,ravel U),
  entries reduce(+,[p[i]*NJ.i for i in 1..#NJ]))
Ug:T := unravel(map(x+->subst(x,SS),ravel U))
\end{axiom}

This defines a family of pre-Frobenius algebras:
\begin{axiom}
test(unravel(map(x+->subst(x,SS),ravel ω))$T=0*ω)
\end{axiom}

The scalar product must be non-degenerate:
\begin{axiom}
Ud:DMP([p[i] for i in 1..#NJ],INT) := determinant [[Ug[i,j] for j in 1..dim] for i in 1..dim]
factor Ud
\end{axiom}

Definition 3

  Co-pairing
\begin{axiom}
Ωg:T:=unravel concat(transpose(1/Ud*adjoint([[Ug[i,j] for j in 1..dim] for i in 1..dim]).adjMat)::List List FRAC POLY INT)
\end{axiom}
<center><pre>
dimension
Ω
U
</pre></center>
\begin{axiom}
contract(contract(Ωg,1,Ug,1),1,2)
\end{axiom}

Definition 4

  Co-multiplication
\begin{axiom}
λg:=reindex(contract(contract(Ug*Yg,1,Ωg,1),1,Ωg,1),[2,3,1]);
-- just for display
reindex(λg,[3,1,2])
\end{axiom}
<center><pre>
i  
λ=Ω
</pre></center>
\begin{axiom}
test(λg*X(1)=Ωg)
\end{axiom}

Definition 5

  <center>Co-unit<pre>
  i 
  U
  </pre></center>

\begin{axiom}
ιg:=X(1)*Ug
\end{axiom}
<center><pre>
Y=U
ι  
</pre></center>
\begin{axiom}
test(ιg * Yg = Ug)
\end{axiom}

For example:
\begin{axiom}
Ug0:T:=unravel eval(ravel Ug,[p[1]=1])
Ωg0:T:=unravel eval(ravel Ωg,[p[1]=1])
λg0:T:=unravel eval(ravel λg,[p[1]=1]);
reindex(λg0,[3,1,2])
\end{axiom}

Sedenion Algebra is Frobenius in just one way!

16-dimensional vector space representing Sedenion Algebra

Ref: http://en.wikipedia.org/wiki/Sedenion

axiom
)set output tex off
 
axiom
)set output algebra on

axiom
dim:=16
(1) 16
Type: PositiveInteger?
axiom
R ==> EXPR INT
Type: Void
axiom
T ==> CartesianTensor(1,dim,EXPR INT)
Type: Void
axiom
X:List T := [unravel [(i=j => 1;0) for j in 1..dim] for i in 1..dim]
(4) [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]
Type: List(CartesianTensor?(1,16,Expression(Integer)))
axiom
X(1),X(2)
(5) [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
Type: Tuple(CartesianTensor?(1,16,Expression(Integer)))

Generate structure constants for Sedenion Algebra (the Caley-Dickson way)

Ref: http://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction

axiom
O ==> Octonion R
Type: Void
axiom
SED ==> DirectProduct(2,O)
Type: Void
axiom
--B0:=map(x+->seden(x.1,x.2,x.3,x.4,x.5,x.6,x.7,x.8,x.9,x.10,x.11,x.12,x.13,x.14,x.15,x.16),1$SQMATRIX(dim,R)::List List R)
pair(x:O,y:O):SED==directProduct vector [x,y]
Function declaration pair : (Octonion(Expression(Integer)),Octonion( Expression(Integer))) -> DirectProduct(2,Octonion(Expression( Integer))) has been added to workspace.
Type: Void
axiom
caleyOne:=pair(1,0)
axiom
Compiling function pair with type (Octonion(Expression(Integer)),
      Octonion(Expression(Integer))) -> DirectProduct(2,Octonion(
      Expression(Integer))) 
(9) [1,0]
Type: DirectProduct?(2,Octonion(Expression(Integer)))
axiom
B:=map(x+->pair(octon(x.1,x.2,x.3,x.4,x.5,x.6,x.7,x.8),octon(x.9,x.10,x.11,x.12,x.13,x.14,x.15,x.16)),1$SQMATRIX(dim,R)::List List R)
(10) [[1,0], [i,0], [j,0], [k,0], [E,0], [I,0], [J,0], [K,0], [0,1], [0,i], [0,j], [0,k], [0,E], [0,I], [0,J], [0,K]]
Type: List(DirectProduct?(2,Octonion(Expression(Integer))))

axiom
caleyMul(x:SED,y:SED):SED == pair((x.1)*(y.1) - conjugate(y.2)*(x.2), (y.2)*(x.1) + (x.2)*conjugate(y.1))
Function declaration caleyMul : (DirectProduct(2,Octonion(Expression (Integer))),DirectProduct(2,Octonion(Expression(Integer)))) -> DirectProduct(2,Octonion(Expression(Integer))) has been added to workspace.
Type: Void
axiom
caleyMul(caleyOne,caleyOne)
axiom
Compiling function caleyMul with type (DirectProduct(2,Octonion(
      Expression(Integer))),DirectProduct(2,Octonion(Expression(Integer
      )))) -> DirectProduct(2,Octonion(Expression(Integer))) 
(12) [1,0]
Type: DirectProduct?(2,Octonion(Expression(Integer)))
axiom
--M0:=matrix [[B0.i*B0.j for j in 1..dim] for i in 1..dim]  
M:=matrix [[caleyMul(B.i,B.j) for j in 1..dim] for i in 1..dim]
(13) [ [[1,0], [i,0], [j,0], [k,0], [E,0], [I,0], [J,0], [K,0], [0,1], [0,i], [0,j], [0,k], [0,E], [0,I], [0,J], [0,K]] ,
[[i,0], [- 1,0], [k,0], [- j,0], [I,0], [- E,0], [- K,0], [J,0], [0,i], [0,- 1], [0,- k], [0,j], [0,- I], [0,E], [0,K], [0,- J]] ,
[[j,0], [- k,0], [- 1,0], [i,0], [J,0], [K,0], [- E,0], [- I,0], [0,j], [0,k], [0,- 1], [0,- i], [0,- J], [0,- K], [0,E], [0,I]] ,
[[k,0], [j,0], [- i,0], [- 1,0], [K,0], [- J,0], [I,0], [- E,0], [0,k], [0,- j], [0,i], [0,- 1], [0,- K], [0,J], [0,- I], [0,E]] ,
[[E,0], [- I,0], [- J,0], [- K,0], [- 1,0], [i,0], [j,0], [k,0], [0,E], [0,I], [0,J], [0,K], [0,- 1], [0,- i], [0,- j], [0,- k]] ,
[[I,0], [E,0], [- K,0], [J,0], [- i,0], [- 1,0], [- k,0], [j,0], [0,I], [0,- E], [0,K], [0,- J], [0,i], [0,- 1], [0,k], [0,- j]] ,
[[J,0], [K,0], [E,0], [- I,0], [- j,0], [k,0], [- 1,0], [- i,0], [0,J], [0,- K], [0,- E], [0,I], [0,j], [0,- k], [0,- 1], [0,i]] ,
[[K,0], [- J,0], [I,0], [E,0], [- k,0], [- j,0], [i,0], [- 1,0], [0,K], [0,J], [0,- I], [0,- E], [0,k], [0,j], [0,- i], [0,- 1]] ,
[[0,1], [0,- i], [0,- j], [0,- k], [0,- E], [0,- I], [0,- J], [0,- K], [- 1,0], [i,0], [j,0], [k,0], [E,0], [I,0], [J,0], [K,0]] ,
[[0,i], [0,1], [0,- k], [0,j], [0,- I], [0,E], [0,K], [0,- J], [- i,0], [- 1,0], [- k,0], [j,0], [- I,0], [E,0], [K,0], [- J,0]] ,
[[0,j], [0,k], [0,1], [0,- i], [0,- J], [0,- K], [0,E], [0,I], [- j,0], [k,0], [- 1,0], [- i,0], [- J,0], [- K,0], [E,0], [I,0]] ,
[[0,k], [0,- j], [0,i], [0,1], [0,- K], [0,J], [0,- I], [0,E], [- k,0], [- j,0], [i,0], [- 1,0], [- K,0], [J,0], [- I,0], [E,0]] ,
[[0,E], [0,I], [0,J], [0,K], [0,1], [0,- i], [0,- j], [0,- k], [- E,0], [I,0], [J,0], [K,0], [- 1,0], [- i,0], [- j,0], [- k,0]] ,
[[0,I], [0,- E], [0,K], [0,- J], [0,i], [0,1], [0,k], [0,- j], [- I,0], [- E,0], [K,0], [- J,0], [i,0], [- 1,0], [k,0], [- j,0]] ,
[[0,J], [0,- K], [0,- E], [0,I], [0,j], [0,- k], [0,1], [0,i], [- J,0], [- K,0], [- E,0], [I,0], [j,0], [- k,0], [- 1,0], [i,0]] ,
[[0,K], [0,J], [0,- I], [0,- E], [0,k], [0,j], [0,- i], [0,1], [- K,0], [J,0], [- I,0], [- E,0], [k,0], [j,0], [- i,0], [- 1,0]] ]
Type: Matrix(DirectProduct?(2,Octonion(Expression(Integer))))

axiom
caleyConj(x:SED):SED == pair(conjugate(x.1), -x.2)
Function declaration caleyConj : DirectProduct(2,Octonion(Expression (Integer))) -> DirectProduct(2,Octonion(Expression(Integer))) has been added to workspace.
Type: Void
axiom
caleyInv(x:SED):SED == inv(caleyMul(caleyConj x,x).1) * caleyConj(x)
Function declaration caleyInv : DirectProduct(2,Octonion(Expression( Integer))) -> DirectProduct(2,Octonion(Expression(Integer))) has been added to workspace.
Type: Void
axiom
--S0(y)==map(x+->(x*inv(y)=1 or x*inv(y)=-1 => x*inv(y);0),M0)
--S0(B0.1)
S(y)==map(x+->(caleyMul(x,caleyInv y)=caleyOne => 1;caleyMul(x,caleyInv y)=-caleyOne => -1;0),M)
Type: Void
axiom
S(B.1)
axiom
Compiling function caleyConj with type DirectProduct(2,Octonion(
      Expression(Integer))) -> DirectProduct(2,Octonion(Expression(
      Integer)))
axiom
Compiling function caleyInv with type DirectProduct(2,Octonion(
      Expression(Integer))) -> DirectProduct(2,Octonion(Expression(
      Integer)))
axiom
Compiling function S with type DirectProduct(2,Octonion(Expression(
      Integer))) -> Matrix(Integer) 
(17) [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,- 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,- 1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,- 1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,- 1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,- 1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,- 1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,- 1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,- 1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,- 1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,- 1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,- 1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,- 1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,- 1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,- 1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,- 1]]
Type: Matrix(Integer)
axiom
--Yg0:T:=unravel concat concat(map(S0,B0)::List List List R);
Yg:T:=unravel concat concat(map(S,B)::List List List R)
(18) [ [[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,- 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,- 1,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,- 1,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,- 1,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,- 1,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,- 1,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,- 1,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,- 1,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,- 1,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,- 1,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,- 1,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,- 1,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,- 1,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,- 1,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,- 1]] , +0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0+ | | |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0| | |, |0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| | | +0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0+ +0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 + | | |0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 | | | |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 | | | |0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 | | |, |0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 | | | |0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1| | | |0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 | | | +0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 + +0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 + | | |0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 | | |, |0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 | | | +0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 + +0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0+ | | |0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0| | | |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0| | |, |0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| | | |0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0| | | +0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0+ +0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0+ | | |0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0| | | |0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | |, |0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0| | | |0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0| | | +0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0+ +0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 + | | |0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 | | | |0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 | | | |0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | | |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | |, |0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1| | | |0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 | | | |0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 | | | |0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 | | | +0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 + +0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0+ | | |0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | |, |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0| | | +0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0+ +0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 + | | |0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1| | |, |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | | | +0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 + +0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0+ | | |0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0| | |, |0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0| | | +0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0+ +0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 + | | |0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 | | | |0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1| | | |0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 | | |, |0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | | |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 | | | |0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | | | +0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 + +0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 + | | |0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 | | |, |0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 | | | +0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 + +0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0+ | | |0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| | | |0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0| | |, |0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0| | | |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | | +0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0+ +0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0+ | | |0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0| | | |0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0| | |, |0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0| | | |0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0| | | +0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0+ +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 + | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1| | | |0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 | | | |0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 | | | |0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 | | |, |0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 | | | |0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | | | |0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 | | | |1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | +0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1+ | | |0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0| | | |0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0| | |] |0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | +1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0+
Type: CartesianTensor?(1,16,Expression(Integer))
axiom
test(Yg0=Yg)
(19) false
Type: Boolean

A scalar product is denoted by the (2,0)-tensor U = \{ u_{ij} \}

axiom
U:T := unravel(concat
  [[script(u,[[],[j,i]])
    for i in 1..dim]
      for j in 1..dim]
        );
Type: CartesianTensor?(1,16,Expression(Integer))

Definition 1

We say that the scalar product is associative if the tensor equation holds:

    Y   =   Y
     U     U

In other words, if the (3,0)-tensor:

    i  j  k   i  j  k   i  j  k
     \ | /     \/  /     \  \/
      \|/   =   \ /   -   \ /
       0         0         0


\label{eq1}
  \Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \}
  (1)
(three-point function) is zero.

axiom
ω := reindex(reindex(U,[2,1])*reindex(Yg,[1,3,2]),[3,2,1])-U*Yg;
Type: CartesianTensor?(1,16,Expression(Integer))

Definition 2

An algebra with a non-degenerate associative scalar product is called pre-Frobenius.

We may consider the problem where multiplication Y is given, and look for all associative scalar products U = U(Y)

This problem can be solved using linear algebra.

axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame initial J := jacobian(ravel ω,concat(map(variables,ravel U))::List Symbol);
Type: Matrix(Expression(Integer))
axiom
uu := transpose matrix [concat(map(variables,ravel(U)))::List Symbol];
Type: Matrix(Polynomial(Integer))
axiom
J::OutputForm * uu::OutputForm = 0;
Type: Equation(OutputForm?)
axiom
nrows(J)
(25) 4096
Type: PositiveInteger?
axiom
ncols(J)
(26) 256
Type: PositiveInteger?

The matrix J transforms the coefficients of the tensor U into coefficients of the tensor \Phi. We are looking for the general linear family of tensors U=U(Y,p_i) such that J transforms U into \Phi=0 for any such U.

If the null space of the J matrix is not empty we can use the basis to find all non-trivial solutions for U:

axiom
NJ:=nullSpace(J)
(27) [ [- 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] ]
Type: List(Vector(Expression(Integer)))
axiom
SS:=map((x,y)+->x=y,concat map(variables,ravel U),
  entries reduce(+,[p[i]*NJ.i for i in 1..#NJ]))
(28) 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 [u = - p , u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 1 1,9 1,10 1,11 1,12 1,13 1,14 1,15 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 1,16 2,1 2,2 2,3 2,4 2,5 2,6 2,7 u = 0, u = 0, u = p , u = 0, u = 0, u = 0, u = 0, u = 0, 1 2,8 2,9 2,10 2,11 2,12 2,13 2,14 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 2,15 2,16 3,1 3,2 3,3 3,4 3,5 3,6 u = 0, u = 0, u = 0, u = 0, u = p , u = 0, u = 0, u = 0, 1 3,7 3,8 3,9 3,10 3,11 3,12 3,13 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 3,14 3,15 3,16 4,1 4,2 4,3 4,4 4,5 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = p , u = 0, 1 4,6 4,7 4,8 4,9 4,10 4,11 4,12 4,13 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 4,14 4,15 4,16 5,1 5,2 5,3 5,4 5,5 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = p , 1 5,6 5,7 5,8 5,9 5,10 5,11 5,12 5,13 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 5,14 5,15 5,16 6,1 6,2 6,3 6,4 6,5 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 6,6 6,7 6,8 6,9 6,10 6,11 6,12 u = p , u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 1 6,13 6,14 6,15 6,16 7,1 7,2 7,3 7,4 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 7,5 7,6 7,7 7,8 7,9 7,10 7,11 7,12 u = 0, u = 0, u = p , u = 0, u = 0, u = 0, u = 0, u = 0, 1 7,13 7,14 7,15 7,16 8,1 8,2 8,3 8,4 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 8,5 8,6 8,7 8,8 8,9 8,10 8,11 8,12 u = 0, u = 0, u = 0, u = p , u = 0, u = 0, u = 0, u = 0, 1 8,13 8,14 8,15 8,16 9,1 9,2 9,3 9,4 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 9,5 9,6 9,7 9,8 9,9 9,10 9,11 9,12 u = 0, u = 0, u = 0, u = 0, u = p , u = 0, u = 0, u = 0, 1 9,13 9,14 9,15 9,16 10,1 10,2 10,3 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 10,4 10,5 10,6 10,7 10,8 10,9 10,10 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = p , 1 10,11 10,12 10,13 10,14 10,15 10,16 11,1 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 11,2 11,3 11,4 11,5 11,6 11,7 11,8 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 11,9 11,10 11,11 11,12 11,13 11,14 u = 0, u = 0, u = p , u = 0, u = 0, u = 0, 1 11,15 11,16 12,1 12,2 12,3 12,4 12,5 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 12,6 12,7 12,8 12,9 12,10 12,11 12,12 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = p , 1 12,13 12,14 12,15 12,16 13,1 13,2 13,3 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 13,4 13,5 13,6 13,7 13,8 13,9 13,10 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 13,11 13,12 13,13 13,14 13,15 13,16 u = 0, u = 0, u = p , u = 0, u = 0, u = 0, 1 14,1 14,2 14,3 14,4 14,5 14,6 14,7 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 14,8 14,9 14,10 14,11 14,12 14,13 14,14 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = p , 1 14,15 14,16 15,1 15,2 15,3 15,4 15,5 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 15,6 15,7 15,8 15,9 15,10 15,11 15,12 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 15,13 15,14 15,15 15,16 16,1 16,2 16,3 u = 0, u = 0, u = p , u = 0, u = 0, u = 0, u = 0, 1 16,4 16,5 16,6 16,7 16,8 16,9 16,10 u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, u = 0, 16,11 16,12 16,13 16,14 16,15 16,16 u = 0, u = 0, u = 0, u = 0, u = 0, u = p ] 1
Type: List(Equation(Expression(Integer)))
axiom
Ug:T := unravel(map(x+->subst(x,SS),ravel U))
+- p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + | 1 | | | | 0 p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 1 | | | | 0 0 p 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 1 | | | | 0 0 0 p 0 0 0 0 0 0 0 0 0 0 0 0 | | 1 | | | | 0 0 0 0 p 0 0 0 0 0 0 0 0 0 0 0 | | 1 | | | | 0 0 0 0 0 p 0 0 0 0 0 0 0 0 0 0 | | 1 | | | | 0 0 0 0 0 0 p 0 0 0 0 0 0 0 0 0 | | 1 | | | | 0 0 0 0 0 0 0 p 0 0 0 0 0 0 0 0 | | 1 | (29) | | | 0 0 0 0 0 0 0 0 p 0 0 0 0 0 0 0 | | 1 | | | | 0 0 0 0 0 0 0 0 0 p 0 0 0 0 0 0 | | 1 | | | | 0 0 0 0 0 0 0 0 0 0 p 0 0 0 0 0 | | 1 | | | | 0 0 0 0 0 0 0 0 0 0 0 p 0 0 0 0 | | 1 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 p 0 0 0 | | 1 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 p 0 0 | | 1 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p 0 | | 1 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p | + 1+
Type: CartesianTensor?(1,16,Expression(Integer))

This defines a family of pre-Frobenius algebras:

axiom
test(unravel(map(x+->subst(x,SS),ravel ω))$T=0*ω)
(30) true
Type: Boolean

The scalar product must be non-degenerate:

axiom
Ud:DMP([p[i] for i in 1..#NJ],INT) := determinant [[Ug[i,j] for j in 1..dim] for i in 1..dim]
16 (31) - p 1
Type: DistributedMultivariatePolynomial?([*01p1],Integer)
axiom
factor Ud
16 (32) - p 1
Type: Factored(DistributedMultivariatePolynomial?([*01p1],Integer))

Definition 3

Co-pairing

axiom
Ωg:T:=unravel concat(transpose(1/Ud*adjoint([[Ug[i,j] for j in 1..dim] for i in 1..dim]).adjMat)::List List FRAC POLY INT)
+ 1 + |- -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 -- 0 0 0 0 0 0 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 -- 0 0 0 0 0 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 -- 0 0 0 0 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 -- 0 0 0 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 -- 0 0 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 0 -- 0 0 0 0 0 0 0 0 | | p | | 1 | (33) | | | 1 | | 0 0 0 0 0 0 0 0 -- 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 0 0 0 -- 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 0 0 0 0 -- 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 0 0 0 0 0 -- 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 -- 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 -- 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -- 0 | | p | | 1 | | | | 1| | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 --| | p | + 1+
Type: CartesianTensor?(1,16,Expression(Integer))

dimension
Ω
U
axiom
contract(contract(Ωg,1,Ug,1),1,2)
(34) 16
Type: CartesianTensor?(1,16,Expression(Integer))

Definition 4

Co-multiplication

axiom
λg:=reindex(contract(contract(Ug*Yg,1,Ωg,1),1,Ωg,1),[2,3,1]);
Type: CartesianTensor?(1,16,Expression(Integer))
axiom
-- just for display
reindex(λg,[3,1,2])
(36) + 1 + |- -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 -- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 -- 0 0 0 0 0 0 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 -- 0 0 0 0 0 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 -- 0 0 0 0 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 -- 0 0 0 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 -- 0 0 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 0 -- 0 0 0 0 0 0 0 0 | | p | | 1 | [| |, | 1 | | 0 0 0 0 0 0 0 0 -- 0 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 0 0 0 -- 0 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 0 0 0 0 -- 0 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 0 0 0 0 0 -- 0 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 -- 0 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 -- 0 0 | | p | | 1 | | | | 1 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -- 0 | | p | | 1 | | | | 1| | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 --| | p | + 1+
1 1 [[0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,--,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,--,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,--,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,--,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,--,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,--,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,--], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0]] p p 1 1 ,
1 1 [[0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,--,0,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,--,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,--,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,--,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,--,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,--,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,--,0,0]] p p 1 1 ,
1 1 [[0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,--,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,--,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,--,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,--,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,--,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,--,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,--,0,0,0]] p p 1 1 ,
1 1 [[0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0], p p 1 1 1 1 [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,--,0,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,--,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,--,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,--,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,--,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,--,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,--], p p 1 1 1 1 [0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0]] p p 1 1 ,
1 1 [[0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,--,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,--,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,--,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,--,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,--], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,--,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,--,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0]] p p 1 1 ,
1 1 [[0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,--,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,--,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,--,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,--,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,--,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,--,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,--,0,0,0,0,0,0]] p p 1 1 ,
1 1 [[0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,--,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,--,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,--,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,--], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,--,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,--,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,--,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0]] p p 1 1 ,
1 1 [[0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --], p p 1 1 1 1 [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,--,0,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,--,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,--,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,--,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,--,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,--,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,--,0,0,0,0,0,0,0,0]] p p 1 1 ,
1 1 [[0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,--,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,--,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,--,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,--], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0], p p 1 1 1 1 [0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,--,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,--,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,--,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0]] p p 1 1 ,
1 1 [[0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,--,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,--,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,--,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,--,0,0], p p 1 1 1 1 [0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,--,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,--,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,--,0,0,0,0,0,0,0,0,0,0]] p p 1 1 ,
1 1 [[0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,--,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,--,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,--,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,--,0,0,0], p p 1 1 1 1 [0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,--,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,--,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,--,0,0,0,0,0,0,0,0,0,0,0]] p p 1 1 ,
1 1 [[0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,--,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,--,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,--], p p 1 1 1 1 [0,0,0,0,0,0,0,0,--,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0], p p 1 1 1 1 [0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,--,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,--,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,--,0,0,0,0,0,0,0,0], p p 1 1 1 1 [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0]] p p 1 1 ,
1 1 [[0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,--], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,--,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,--,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,--,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,--,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,--,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,--,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0]] p p 1 1 ,
1 1 [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,--,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,--,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,--,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,--,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,--,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,--,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,--,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] p p 1 1 ,
1 1 [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,- --], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,--,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,- --,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,0,0,--,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,--,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,0,0,- --,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,--,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,0,0,- --,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,--,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,- --,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,0,0,--,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,--,0,0,0,0,0,0,0,0,0,0,0,0,0], p p 1 1 1 1 [0,- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [- --,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] p p 1 1 ]
Type: CartesianTensor?(1,16,Expression(Integer))

i  
λ=Ω
axiom
test(λg*X(1)=Ωg)
(37) true
Type: Boolean

Definition 5

Co-unit
  i 
  U
  

axiom
ιg:=X(1)*Ug
(38) [- p ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 1
Type: CartesianTensor?(1,16,Expression(Integer))

Y=U
ι  
axiom
test(ιg * Yg = Ug)
(39) true
Type: Boolean

For example:

axiom
Ug0:T:=unravel eval(ravel Ug,[p[1]=1])
+- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0+ | | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0| (40) | | | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0| | | + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1+
Type: CartesianTensor?(1,16,Expression(Integer))
axiom
Ωg0:T:=unravel eval(ravel Ωg,[p[1]=1])
+- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0+ | | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0| (41) | | | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0| | | + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1+
Type: CartesianTensor?(1,16,Expression(Integer))
axiom
λg0:T:=unravel eval(ravel λg,[p[1]=1]);
Type: CartesianTensor?(1,16,Expression(Integer))
axiom
reindex(λg0,[3,1,2])
(43) +- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0+ | | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0| [| |, | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0| | | + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1+ + 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0+ | | |- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0| | |, | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| | | + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0+ + 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 + | | | 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 | | | |- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 | | |, | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1| | | | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 | | | + 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 + + 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 + | | | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 | | |, | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 | | | + 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 + + 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0+ | | | 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0| | | |- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0| | |, | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| | | | 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0| | | + 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0+ + 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0+ | | | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0| | | | 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | |, | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0| | | | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0| | | + 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0+ + 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 + | | | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | | |- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | |, | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1| | | | 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 | | | + 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 + + 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0+ | | | 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | |, | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0| | | + 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0+ + 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 + | | | 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1| | |, |- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | | | + 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 + + 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0+ | | | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0| | |, | 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0| | | + 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0+ + 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 + | | | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1| | | | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 | | |, | 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | | |- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | | | + 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 + | | | 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 | | |, | 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | |- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 | | | + 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0+ | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| | | | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0| | |, | 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0| | | |- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0| | | + 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0+ + 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0+ | | | 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1| | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0| | | | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0| | | | 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0| | |, | 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0| | | | 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0| | | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | |- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0| | | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0| | | + 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0+ + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 + | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1| | | | 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 | | |, | 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 | | | |- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | + 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1+ | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 | | |] | 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | +- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +
Type: CartesianTensor?(1,16,Expression(Integer))