Quaternion Algebra Is Frobenius In Many Ways
Linear operators over a 4-dimensional vector space representing quaternion algebra
Ref:
We need the Axiom LinearOperator library.
fricas
(1) -> )library CARTEN ARITY CMONAL CPROP CLOP CALEY
CartesianTensor is now explicitly exposed in frame initial
CartesianTensor will be automatically loaded when needed from
/var/aw/var/LatexWiki/CARTEN.NRLIB/CARTEN
Arity is now explicitly exposed in frame initial
Arity will be automatically loaded when needed from
/var/aw/var/LatexWiki/ARITY.NRLIB/ARITY
ClosedMonoidal is now explicitly exposed in frame initial
ClosedMonoidal will be automatically loaded when needed from
/var/aw/var/LatexWiki/CMONAL.NRLIB/CMONAL
ClosedProp is now explicitly exposed in frame initial
ClosedProp will be automatically loaded when needed from
/var/aw/var/LatexWiki/CPROP.NRLIB/CPROP
ClosedLinearOperator is now explicitly exposed in frame initial
ClosedLinearOperator will be automatically loaded when needed from
/var/aw/var/LatexWiki/CLOP.NRLIB/CLOP
CaleyDickson is now explicitly exposed in frame initial
CaleyDickson will be automatically loaded when needed from
/var/aw/var/LatexWiki/CALEY.NRLIB/CALEY
Use the following macros for convenient notation
fricas
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
Type: Void
fricas
-- subscript and superscripts
macro sb == subscript
Type: Void
fricas
macro sp == superscript
Type: Void
ℒ is the domain of 4-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.
fricas
dim:=4
fricas
macro ℂ == CaleyDickson
Type: Void
fricas
macro ℚ == Expression Integer
Type: Void
fricas
ℒ := ClosedLinearOperator(OVAR ['1,'i,'j,'k], ℚ)
Type: Type
fricas
ⅇ:List ℒ := basisOut()
fricas
ⅆ:List ℒ := basisIn()
fricas
I:ℒ:=[1] -- identity for composition
fricas
X:ℒ:=[2,1] -- twist
fricas
V:ℒ:=ev(1) -- evaluation
fricas
Λ:ℒ:=co(1) -- co-evaluation
fricas
equate(eq)==map((x,y)+->(x=y),ravel lhs eq, ravel rhs eq);
Type: Void
Now generate structure constants for Quaternion Algebra
The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.
Split-complex and co-quaternions can be specified by Caley-Dickson parameters (i2, j2)
fricas
i2:=sp('i,[2])
Type: Symbol
fricas
--i2:= -1 -- complex
j2:=sp('j,[2])
Type: Symbol
fricas
--j2:= -1 -- quaternion
k2:=-i2*j2;
Type: Polynomial(Integer)
fricas
QQ := ℂ(ℂ(ℚ,'i,-i2),'j,-j2);
Cannot convert the value from type Polynomial(Integer) to
CaleyDickson(Expression(Integer),i,-(i[;2])) .
Basis: Each B.i is a quaternion number
fricas
B:List QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::List List ℚ)
QQ is not a valid type.
Units
fricas
q:=ⅇ.1; i:=ⅇ.2; j:=ⅇ.3; k:=ⅇ.4;
Multiplication of arbitrary quaternions and
fricas
a:=Σ(sb('a,[i])*ⅇ.i, i,1..dim)
fricas
b:=Σ(sb('b,[i])*ⅇ.i, i,1..dim)
fricas
(a*b)/Y
0 0
-- -
2 0
+
arity warning: ----
2
+ 0
-- -
2 0
+
Multiplication is Associative
fricas
test(
( I Y ) / _
( Y ) = _
( Y I ) / _
( Y ) )
+ 0
- -
+ 0
arity warning: ---
+ 0
- -
+ 0
There are no exposed library operations named Y but there are 2
unexposed operations with that name. Use HyperDoc Browse or issue
)display op Y
to learn more about the available operations.
Cannot find a definition or applicable library operation named Y
with argument type(s)
ClosedLinearOperator(OrderedVariableList([1,i,j,k]),Expression(Integer))
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
A scalar product is denoted by the (2,0)-tensor
fricas
U:=Σ(Σ(script('u,[[],[i,j]])*ⅆ.i*ⅆ.j, i,1..dim), j,1..dim)
Definition 1
We say that the scalar product is associative if the tensor
equation holds:
Y = Y
U U
In other words, if the (3,0)-tensor:
(three-point function) is zero.
Using the LinearOperator domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.
fricas
ω:ℒ :=
( Y I ) /
U -
( I Y ) /
U
There are no exposed library operations named Y but there are 2
unexposed operations with that name. Use HyperDoc Browse or issue
)display op Y
to learn more about the available operations.
Cannot find a definition or applicable library operation named Y
with argument type(s)
ClosedLinearOperator(OrderedVariableList([1,i,j,k]),Expression(Integer))
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
Definition 2
An algebra with a non-degenerate associative scalar product
is called a [Frobenius Algebra]?.
The Cartan-Killing Trace
fricas
Ú:=
( Y Λ ) / _
( Y I ) / _
V
There are no exposed library operations named Y but there are 2
unexposed operations with that name. Use HyperDoc Browse or issue
)display op Y
to learn more about the available operations.
Cannot find a definition or applicable library operation named Y
with argument type(s)
ClosedLinearOperator(OrderedVariableList([1,i,j,k]),Expression(Integer))
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
forms a non-degenerate associative scalar product for Y
fricas
Ũ := Ù
Type: Variable(Ù)
fricas
test
( Y I ) /
Ũ =
( I Y ) /
Ũ
There are no exposed library operations named Y but there are 2
unexposed operations with that name. Use HyperDoc Browse or issue
)display op Y
to learn more about the available operations.
Cannot find a definition or applicable library operation named Y
with argument type(s)
ClosedLinearOperator(OrderedVariableList([1,i,j,k]),Expression(Integer))
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
General Solution
We may consider the problem where multiplication Y is given,
and look for all associative scalar products
This problem can be solved using linear algebra.
fricas
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame
initial
J := jacobian(ravel ω,concat map(variables,ravel U)::List Symbol);
Type: Matrix(Expression(Integer))
fricas
nrows(J),ncols(J)
Type: Tuple(PositiveInteger
?)
The matrix J
transforms the coefficients of the tensor
into coefficients of the tensor . We are looking for
the general linear family of tensors such that
J
transforms into for any such .
If the null space of the J
matrix is not empty we can use
the basis to find all non-trivial solutions for U:
fricas
Ñ:=nullSpace(J)
Type: List(Vector(Expression(Integer)))
fricas
ℰ:=map((x,y)+->x=y, concat
map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )
Type: List(Equation(Expression(Integer)))
This defines a family of pre-Frobenius algebras:
fricas
zero? eval(ω,ℰ)
Type: Boolean
fricas
Ų:ℒ := eval(U,ℰ)
Frobenius Form (co-unit)
fricas
d:=ε1*ⅆ.1+εi*ⅆ.2+εj*ⅆ.3+εk*ⅆ.4
fricas
equate(d=
( q I ) / _
Ų )
fricas
Compiling function equate with type Equation(ClosedLinearOperator(
OrderedVariableList([1,i,j,k]),Expression(Integer))) -> List(
Equation(Expression(Integer)))
Type: List(Equation(Expression(Integer)))
Express scalar product in terms of Frobenius form
fricas
Ξ:=solve(%,[sb('p,[i]) for i in 1..#Ñ]).1
>> Error detected within library code:
system does not have a finite number of solutions
In general the pairing is not symmetric!
fricas
u1:=matrix [[retract((ⅇ.i ⅇ.j)/Ų) for i in 1..dim] for j in 1..dim]
Type: Matrix(Expression(Integer))
The scalar product must be non-degenerate:
fricas
Ů:=determinant u1
Type: Expression(Integer)
fricas
factor(numer Ů)/factor(denom Ů)
Type: Fraction(Factored(SparseMultivariatePolynomial
?(Integer,
Kernel(Expression(Integer)))))
Cartan-Killing is a special case
fricas
ck:=solve(equate(eval(Ũ,Ξ)=Ų),[ε1,εi,εj,εk]).1
There are 10 exposed and 6 unexposed library operations named eval
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue
)display op eval
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.
Cannot find a definition or applicable library operation named eval
with argument type(s)
Variable(Ù)
Variable(Ξ)
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
Frobenius scalar product of "vector" quaternions and
fricas
a:=sb('a,[1])*i+sb('a,[2])*j
fricas
b:=sb('b,[1])*i+sb('b,[2])*j
fricas
(a,a)/Ų
fricas
(b,b)/Ų
fricas
(a,b)/Ų
Definition 3
Co-scalar product
Solve the Snake Relation as a system of linear equations.
fricas
Ω:ℒ:=Σ(Σ(script('u,[[i,j]])*ⅇ.i*ⅇ.j, i,1..dim), j,1..dim)
fricas
ΩX:=Ω/X;
fricas
UXΩ:=(I*ΩX)/(Ų*I);
fricas
ΩXU:=(ΩX*I)/(I*Ų);
fricas
eq1:=equate(UXΩ=I);
Type: List(Equation(Expression(Integer)))
fricas
eq2:=equate(ΩXU=I);
Type: List(Equation(Expression(Integer)))
fricas
snake:=solve(concat(eq1,eq2),concat [[script('u,[[i,j]]) for i in 1..dim] for j in 1..dim]);
Type: List(List(Equation(Expression(Integer))))
fricas
if #snake ~= 1 then error "no solution"
Type: Void
fricas
Ω:=eval(Ω,snake(1))
fricas
ΩX:=Ω/X;
The common demoninator is
fricas
squareFreePart factor denom Ů / squareFreePart factor numer Ů
Function: squareFree : % -> Factored(%) is missing from domain: Factored(SparseMultivariatePolynomial(Integer,Kernel(Expression(Integer))))
Internal Error
The function squareFree with signature (Factored %) is missing from
domain Factored
(SparseMultivariatePolynomial (Integer) (Kernel (Expression (Integer))))
Check "dimension" and the snake relations.
fricas
O:ℒ:=
Ω /
Ų
fricas
test
( I ΩX ) /
( Ų I ) = I
Type: Boolean
fricas
test
( ΩX I ) /
( I Ų ) = I
Type: Boolean
Cartan-Killing co-scalar
fricas
eval(Ω,ck)
There are 10 exposed and 6 unexposed library operations named eval
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue
)display op eval
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.
Cannot find a definition or applicable library operation named eval
with argument type(s)
ClosedLinearOperator(OrderedVariableList([1,i,j,k]),Expression(Integer))
Variable(ck)
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
Definition 4
Co-algebra
Compute the "three-point" function and use it to define co-multiplication.
fricas
W:=
(Y I) /
Ų
There are no exposed library operations named Y but there are 2
unexposed operations with that name. Use HyperDoc Browse or issue
)display op Y
to learn more about the available operations.
Cannot find a definition or applicable library operation named Y
with argument type(s)
ClosedLinearOperator(OrderedVariableList([1,i,j,k]),Expression(Integer))
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
Cartan-Killing co-multiplication
fricas
eval(λ,ck)
There are 10 exposed and 6 unexposed library operations named eval
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue
)display op eval
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.
Cannot find a definition or applicable library operation named eval
with argument type(s)
Variable(λ)
Variable(ck)
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
fricas
test
( I ΩX ) /
( Y I ) = λ
There are no exposed library operations named Y but there are 2
unexposed operations with that name. Use HyperDoc Browse or issue
)display op Y
to learn more about the available operations.
Cannot find a definition or applicable library operation named Y
with argument type(s)
ClosedLinearOperator(OrderedVariableList([1,i,j,k]),Expression(Integer))
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
Co-associativity
fricas
test(
( λ ) / _
( I λ ) = _
( λ ) / _
( λ I ) )
0 +
- -
0 +
arity warning: ---
0 +
- -
0 +
There are no library operations named λ
Use HyperDoc Browse or issue
)what op λ
to learn if there is any operation containing " λ " in its name.
Cannot find a definition or applicable library operation named λ
with argument type(s)
ClosedLinearOperator(OrderedVariableList([1,i,j,k]),Expression(Integer))
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
fricas
test
q /
λ = ΩX
0 0
- -
+ 0
arity warning: ---
+ 0
- -
+ 0
Type: Boolean
Frobenius Condition (fork)
fricas
H :=
Y /
λ
Type: Fraction(Polynomial(Integer))
fricas
test
( λ I ) /
( I Y ) = H
There are no library operations named λ
Use HyperDoc Browse or issue
)what op λ
to learn if there is any operation containing " λ " in its name.
Cannot find a definition or applicable library operation named λ
with argument type(s)
ClosedLinearOperator(OrderedVariableList([1,i,j,k]),Expression(Integer))
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
The Cartan-Killing form makes H of the Frobenius condition idempotent
fricas
test( eval(H,ck)=eval(H/H,ck) )
There are 10 exposed and 6 unexposed library operations named eval
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue
)display op eval
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.
Cannot find a definition or applicable library operation named eval
with argument type(s)
Fraction(Polynomial(Integer))
Variable(ck)
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
But it is not unique. E.g. other idempots
fricas
h1:=map(numer,ravel(H-H/H)::List FRAC POLY INT);
There are 2 exposed and 0 unexposed library operations named ravel
having 1 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue
)display op ravel
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.
Cannot find a definition or applicable library operation named ravel
with argument type(s)
Fraction(Polynomial(Integer))
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
Handle and handle element
fricas
Φ :=
λ /
Y
Type: Fraction(Polynomial(Integer))
fricas
Φ1 := q /
Φ
0 0
- -
+ 0
arity warning: ---
+ 0
- -
+ 0
The Cartan-Killing form makes Φ into the identity
fricas
test( eval(Φ,ck)=I )
There are 10 exposed and 6 unexposed library operations named eval
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue
)display op eval
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.
Cannot find a definition or applicable library operation named eval
with argument type(s)
Fraction(Polynomial(Integer))
Variable(ck)
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
but it can be the identity in many ways. For example,
fricas
solve(equate(eval(Φ,[ε1=1,εi=1,εj=1,j2=-1])=I),[εk])
Type: List(List(Equation(Expression(Integer))))
If handle is identity then fork is idempotent but the converse is not true
fricas
Φ1:=map(numer,ravel(Φ-I)::List FRAC POLY INT);
>> Error detected within library code:
Rank mismatch
Figure 12
fricas
φφ:= _
( Ω Ω ) / _
( X I I ) / _
( I X I ) / _
( I I X ) / _
( Y Y );
There are no exposed library operations named Y but there are 2
unexposed operations with that name. Use HyperDoc Browse or issue
)display op Y
to learn more about the available operations.
Cannot find a definition or applicable library operation named Y
with argument type(s)
Variable(Y)
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
For Cartan-Killing this is just the co-scalar
fricas
test(eval(φφ,ck)=eval(Ω,ck))
There are 10 exposed and 6 unexposed library operations named eval
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue
)display op eval
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.
Cannot find a definition or applicable library operation named eval
with argument type(s)
Variable(φφ)
Variable(ck)
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
Bi-algebra conditions
fricas
ΦΦ:= _
( λ λ ) / _
( I I X ) / _
( I X I ) / _
( I I X ) / _
( Y Y ) ;
There are no library operations named λ
Use HyperDoc Browse or issue
)what op λ
to learn if there is any operation containing " λ " in its name.
Cannot find a definition or applicable library operation named λ
with argument type(s)
Variable(λ)
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
Theorem 8.3
fricas
u2:=map(retract,matrix [ _
[q/d, i/d, j/d, k/d], _
[i/d, i2*q/d, k/d, i2*j/d], _
[j/d, -k/d, j2*q/d, -j2*i/d], _
[k/d, -i2*j/d, j2*i/d, k2*q/d]])
Type: Matrix(Expression(Integer))
fricas
test(u2=transpose(u1))
Type: Boolean
fricas
Ů2 := -retract( k2*(q/d)^2 + j2*(i/d)^2 + i2*(j/d)^2 - (k/d)^2 )^2
Type: Expression(Integer)
fricas
factor(numer Ů2)/factor(denom Ů2)
Type: Fraction(Factored(SparseMultivariatePolynomial
?(Integer,
Kernel(Expression(Integer)))))
fricas
test(Ů=Ů2)
Type: Boolean