Quaternion Algebra Is Frobenius In Many Ways Linear operators over a 4-dimensional vector space representing quaternion algebra Ref:
We need the Axiom LinearOperator library. fricas )library CARTEN ARITY CMONAL CPROP CLOP CALEY Use the following macros for convenient notation fricas -- summation macro Σ(x, Type: Void
fricas -- subscript and superscripts macro sb == subscript Type: Void
fricas macro sp == superscript Type: Void
ℒ is the domain of 4-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients. fricas dim:=4
Type: PositiveInteger?
fricas macro ℂ == CaleyDickson Type: Void
fricas macro ℚ == Expression Integer Type: Void
fricas ℒ := ClosedLinearOperator(OVAR ['1,
Type: Type
fricas ⅇ:List ℒ := basisOut()
fricas ⅆ:List ℒ := basisIn()
fricas I:ℒ:=[1] -- identity for composition
fricas X:ℒ:=[2,
fricas V:ℒ:=ev(1) -- evaluation
fricas Λ:ℒ:=co(1) -- co-evaluation
fricas equate(eq)==map((x, Type: Void
Now generate structure constants for Quaternion Algebra The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors. Split-complex and co-quaternions can be specified by Caley-Dickson parameters (i2, j2) fricas i2:=sp('i,
Type: Symbol
fricas --i2:= -1 -- complex j2:=sp('j,
Type: Symbol
fricas --j2:= -1 -- quaternion k2:=-i2*j2; Type: Polynomial(Integer)
fricas QQ := ℂ(ℂ(ℚ, Type: Type
Basis: Each B.i is a quaternion number fricas B:List QQ := map(x +-> hyper x,
fricas -- Multiplication table: M:Matrix QQ := matrix [[B.i*B.j for i in 1..dim] for j in 1..dim]
fricas -- Function to divide the matrix entries by a basis element S(y) == map(x +-> real real(x/y), Type: Void
fricas -- The result is a nested list ѕ :=map(S, fricas Compiling function S with type CaleyDickson(CaleyDickson(Expression( Integer),
Type: List(List(List(Expression(Integer))))
fricas -- structure constants form a tensor operator Y := Σ(Σ(Σ(ѕ(i)(k)(j)*ⅇ.i*ⅆ.j*ⅆ.k,
fricas arity Y
fricas matrix [[(ⅇ.i*ⅇ.j)/Y for i in 1..dim] for j in 1..dim]
Units fricas q:=ⅇ.1; i:=ⅇ.2; j:=ⅇ.3; k:=ⅇ.4; Multiplication of arbitrary quaternions fricas a:=Σ(sb('a,
fricas b:=Σ(sb('b,
fricas (a*b)/Y
Multiplication is Associative fricas test( ( I Y ) / _ ( Y ) = _ ( Y I ) / _ ( Y ) )
Type: Boolean
A scalar product is denoted by the (2,0)-tensor
fricas U:=Σ(Σ(script('u,
Definition 1We say that the scalar product is associative if the tensor equation holds: Y = Y U U In other words, if the (3,0)-tensor:
Using the LinearOperator domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators. fricas ω:ℒ := ( Y I ) / U - ( I Y ) / U
Definition 2An algebra with a non-degenerate associative scalar product is called a [Frobenius Algebra]?. The Cartan-Killing Trace fricas Ú:= ( Y Λ ) / _ ( Y I ) / _ V
fricas Ù:= ( Λ Y ) / _ ( I Y ) / _ V
fricas test(Ù=Ú)
Type: Boolean
forms a non-degenerate associative scalar product for Y fricas Ũ := Ù
fricas test ( Y I ) / Ũ = ( I Y ) / Ũ
Type: Boolean
fricas determinant [[retract((ⅇ.i * ⅇ.j)/Ũ) for j in 1..dim] for i in 1..dim]
Type: Expression(Integer)
General Solution We may consider the problem where multiplication Y is given,
and look for all associative scalar products This problem can be solved using linear algebra. fricas )expose MCALCFN Type: Matrix(Expression(Integer))
fricas nrows(J),
Type: Tuple(PositiveInteger?)
The matrix If the null space of the fricas Ñ:=nullSpace(J)
Type: List(Vector(Expression(Integer)))
fricas ℰ:=map((x,
Type: List(Equation(Expression(Integer)))
This defines a family of pre-Frobenius algebras: fricas zero? eval(ω,
Type: Boolean
fricas Ų:ℒ := eval(U,
Frobenius Form (co-unit) fricas d:=ε1*ⅆ.1+εi*ⅆ.2+εj*ⅆ.3+εk*ⅆ.4
fricas equate(d= ( q I ) / _ Ų ) fricas Compiling function equate with type Equation(ClosedLinearOperator( OrderedVariableList([1,
Type: List(Equation(Expression(Integer)))
Express scalar product in terms of Frobenius form fricas Ξ:=solve(%, In general the pairing is not symmetric! fricas u1:=matrix [[retract((ⅇ.i ⅇ.j)/Ų) for i in 1..dim] for j in 1..dim]
Type: Matrix(Expression(Integer))
The scalar product must be non-degenerate: fricas Ů:=determinant u1
Type: Expression(Integer)
fricas factor(numer Ů)/factor(denom Ů)
Type: Fraction(Factored(SparseMultivariatePolynomial?(Integer,
Cartan-Killing is a special case fricas ck:=solve(equate(eval(Ũ, Frobenius scalar product of "vector" quaternions fricas a:=sb('a,
fricas b:=sb('b,
fricas (a,
fricas (b,
fricas (a,
Definition 3Co-scalar product Solve the Snake Relation as a system of linear equations. fricas Ω:ℒ:=Σ(Σ(script('u,
fricas ΩX:=Ω/X; fricas UXΩ:=(I*ΩX)/(Ų*I); fricas ΩXU:=(ΩX*I)/(I*Ų); fricas eq1:=equate(UXΩ=I); Type: List(Equation(Expression(Integer)))
fricas eq2:=equate(ΩXU=I); Type: List(Equation(Expression(Integer)))
fricas snake:=solve(concat(eq1, Type: List(List(Equation(Expression(Integer))))
fricas if #snake ~= 1 then error "no solution" Type: Void
fricas Ω:=eval(Ω,
fricas ΩX:=Ω/X; The common demoninator is fricas squareFreePart factor denom Ů / squareFreePart factor numer Ů Check "dimension" and the snake relations. fricas O:ℒ:= Ω / Ų
fricas test ( I ΩX ) / ( Ų I ) = I
Type: Boolean
fricas test ( ΩX I ) / ( I Ų ) = I
Type: Boolean
Cartan-Killing co-scalar fricas eval(Ω, Definition 4Co-algebra Compute the "three-point" function and use it to define co-multiplication. fricas W:= (Y I) / Ų
fricas λ:= ( ΩX I ΩX ) / ( I W I )
Cartan-Killing co-multiplication fricas eval(λ, fricas test ( I ΩX ) / ( Y I ) = λ
Type: Boolean
fricas test ( ΩX I ) / ( I Y ) = λ
Type: Boolean
Co-associativity fricas test( ( λ ) / _ ( I λ ) = _ ( λ ) / _ ( λ I ) )
Type: Boolean
fricas test q / λ = ΩX
Type: Boolean
Frobenius Condition (fork) fricas H := Y / λ
fricas test ( λ I ) / ( I Y ) = H
Type: Boolean
fricas test ( I λ ) / ( Y I ) = H
Type: Boolean
The Cartan-Killing form makes H of the Frobenius condition idempotent fricas test( eval(H, But it is not unique. E.g. other idempots fricas h1:=map(numer, Handle and handle element fricas Φ := λ / Y
fricas Φ1 := q / Φ
The Cartan-Killing form makes Φ into the identity fricas test( eval(Φ, but it can be the identity in many ways. For example, fricas solve(equate(eval(Φ,
Type: List(List(Equation(Expression(Integer))))
If handle is identity then fork is idempotent but the converse is not true fricas Φ1:=map(numer, Figure 12 fricas φφ:= _ ( Ω Ω ) / _ ( X I I ) / _ ( I X I ) / _ ( I I X ) / _ ( Y Y ); fricas φφ1:=map((x:ℚ):ℚ+->numer x,
fricas φφ2:=denom(ravel(φφ).1)
Type: SparseMultivariatePolynomial?(Integer,
fricas test(φφ=(1/φφ2)*φφ1)
Type: Boolean
For Cartan-Killing this is just the co-scalar fricas test(eval(φφ, Bi-algebra conditions fricas ΦΦ:= _ ( λ λ ) / _ ( I I X ) / _ ( I X I ) / _ ( I I X ) / _ ( Y Y ) ; fricas test((q,
Type: Boolean
fricas test(eval(ΦΦ, Theorem 8.3 fricas u2:=map(retract,
Type: Matrix(Expression(Integer))
fricas test(u2=transpose(u1))
Type: Boolean
fricas Ů2 := -retract( k2*(q/d)^2 + j2*(i/d)^2 + i2*(j/d)^2 - (k/d)^2 )^2
Type: Expression(Integer)
fricas factor(numer Ů2)/factor(denom Ů2)
Type: Fraction(Factored(SparseMultivariatePolynomial?(Integer,
fricas test(Ů=Ů2)
Type: Boolean
|