| 1 2 | ||
|
Editor: Bill Page
Time: 2009/09/23 01:16:48 GMT-7 |
||
| Note: new | ||
changed: - \begin{axiom} )lib FPROD )lib FSUM \end{axiom} \begin{spad} )abbrev domain FRING FreeRing ++ Description: ++ One can construct the free algebra R<E> on any set A of generators. ++ Since rings may be regarded as Z-algebras, a free ring on A can be ++ defined as the free algebra Z<E> ++ Ref: http://en.wikipedia.org/wiki/Free_ring FreeRing(A:SetCategory):Ring with if A has Comparable then Comparable coerce:A->% _-:(%,%)->% == add RepSum == FreeSum(FreeAbelianGroup A,FreeAbelianGroup %) RepPrd == FreeProduct(FreeMonoid A,FreeMonoid %) Rep == Union(sum:RepSum,prd:RepPrd) rep(x:%):Rep == x pretend Rep per(x:Rep):% == x pretend % coerce(x:%):OutputForm == r:=rep(x) if x=0 or x=1 then return coerce(r) if r case sum then infix(_+, [ _ if is2(s) then _ infix(_+, [ _ if t.exp=1 then coerce(t.gen) _ else if t.gen=1 then coerce(t.exp) else coerce(t.exp)*coerce(t.gen) _ for t in terms(retract(s)@FreeAbelianGroup(%)) ]) _ else coerce(s) for s in terms(r.sum)]) else blankSeparate [ _ if is2(s) then _ blankSeparate [ _ if t.exp=1 then paren(coerce(t.gen)) _ else paren(coerce(t.gen)^coerce(t.exp)) _ for t in factors(retract(s)@FreeMonoid(%)) ] _ else coerce(s) for s in factors(r.prd)] --coerce(x:A):% == per [in1(coerce x)$RepSum] coerce(x:A):% == per [in1(coerce x)$RepPrd] Zero():% == per [0$RepSum] One():% == per [1$RepPrd] (x:% = y:%):Boolean == (rep(x) = rep(y))$Rep (x1:% + x2:%):% == if x1=0 then return x2 if x2=0 then return x1 r1:=rep(x1); r2:=rep(x2) if r1 case sum then s1:=r1.sum else s1:=in2(coerce x1)$RepSum if r2 case sum then s2:=r2.sum else s2:=in2(coerce x2)$RepSum per [s1+s2] (x1:% * x2:%):% == if x1=0 then return 0 if x2=0 then return 0 if x1=1 then return x2 if x2=1 then return x1 r1:=rep(x1); r2:=rep(x2) if r1 case prd then p1:=r1.prd else p1:=in2(coerce x1)$RepPrd if r2 case prd then p2:=r2.prd else p2:=in2(coerce x2)$RepPrd per [p1*p2] _-(x:%):% == if x=0 then return 0 r:=rep(x) if r case sum then s:=r.sum else s:=in2(coerce x)$RepSum per [-s] (x:% - y:%):% == x + (-y) (n:Integer * x:%):% == if x=0 then return 0 if n>0 then return (n-1) * x + x if n<0 then return (n+1) * x - x return 0 coerce(x:Integer):% == x*1 \end{spad} \begin{axiom} f:=FreeRing(Symbol) (a,b,c):f:=('a,'b,'c) a*b+b*a ab:=a+b ac:=a*c ab*ac a^(-2)+b^2 a*b-b*a a+b-(a+b) 3*a+2*b+c \end{axiom}
)lib FPROD
FreeProduct is now explicitly exposed in frame initial FreeProduct will be automatically loaded when needed from /var/zope2/var/LatexWiki/FPROD.NRLIB/FPROD
)lib FSUM
FreeSum is now explicitly exposed in frame initial FreeSum will be automatically loaded when needed from /var/zope2/var/LatexWiki/FSUM.NRLIB/FSUM
)abbrev domain FRING FreeRing ++ Description: ++ One can construct the free algebra R<E> on any set A of generators. ++ Since rings may be regarded as Z-algebras,a free ring on A can be ++ defined as the free algebra Z<E> ++ Ref: http://en.wikipedia.org/wiki/Free_ring FreeRing(A:SetCategory):Ring with if A has Comparable then Comparable coerce:A->% _-:(%, %)->% == add RepSum == FreeSum(FreeAbelianGroup A, FreeAbelianGroup %) RepPrd == FreeProduct(FreeMonoid A, FreeMonoid %) Rep == Union(sum:RepSum, prd:RepPrd) rep(x:%):Rep == x pretend Rep per(x:Rep):% == x pretend % coerce(x:%):OutputForm == r:=rep(x) if x=0 or x=1 then return coerce(r) if r case sum then infix(_+, [ _ if is2(s) then _ infix(_+, [ _ if t.exp=1 then coerce(t.gen) _ else if t.gen=1 then coerce(t.exp) else coerce(t.exp)*coerce(t.gen) _ for t in terms(retract(s)@FreeAbelianGroup(%)) ]) _ else coerce(s) for s in terms(r.sum)]) else blankSeparate [ _ if is2(s) then _ blankSeparate [ _ if t.exp=1 then paren(coerce(t.gen)) _ else paren(coerce(t.gen)^coerce(t.exp)) _ for t in factors(retract(s)@FreeMonoid(%)) ] _ else coerce(s) for s in factors(r.prd)]
--coerce(x:A):% == per [in1(coerce x)$RepSum] coerce(x:A):% == per [in1(coerce x)$RepPrd]
Zero():% == per [0$RepSum] One():% == per [1$RepPrd] (x:% = y:%):Boolean == (rep(x) = rep(y))$Rep (x1:% + x2:%):% == if x1=0 then return x2 if x2=0 then return x1 r1:=rep(x1); r2:=rep(x2) if r1 case sum then s1:=r1.sum else s1:=in2(coerce x1)$RepSum if r2 case sum then s2:=r2.sum else s2:=in2(coerce x2)$RepSum per [s1+s2] (x1:% * x2:%):% == if x1=0 then return 0 if x2=0 then return 0 if x1=1 then return x2 if x2=1 then return x1 r1:=rep(x1); r2:=rep(x2) if r1 case prd then p1:=r1.prd else p1:=in2(coerce x1)$RepPrd if r2 case prd then p2:=r2.prd else p2:=in2(coerce x2)$RepPrd per [p1*p2] _-(x:%):% == if x=0 then return 0 r:=rep(x) if r case sum then s:=r.sum else s:=in2(coerce x)$RepSum per [-s] (x:% - y:%):% == x + (-y) (n:Integer * x:%):% == if x=0 then return 0 if n>0 then return (n-1) * x + x if n<0 then return (n+1) * x - x return 0 coerce(x:Integer):% == x*1
Compiling FriCAS source code from file
/var/zope2/var/LatexWiki/4793027643467466752-25px002.spad using
old system compiler.
FRING abbreviates domain FreeRing
------------------------------------------------------------------------
initializing NRLIB FRING for FreeRing
compiling into NRLIB FRING
compiling local rep : $ -> Union(sum: FreeSum(FreeAbelianGroup A, FreeAbelianGroup $), prd: FreeProduct(FreeMonoid A, FreeMonoid $))
FRING;rep is replaced by x
Time: 0.09 SEC.
compiling local per : Union(sum: FreeSum(FreeAbelianGroup A, FreeAbelianGroup $), prd: FreeProduct(FreeMonoid A, FreeMonoid $)) -> $
FRING;per is replaced by x
Time: 0 SEC.
compiling exported coerce : $ -> OutputForm
Time: 0.12 SEC.
compiling exported coerce : A -> $
Time: 0.01 SEC.
compiling exported Zero : () -> $
Time: 0 SEC.
compiling exported One : () -> $
Time: 0 SEC.
compiling exported = : ($, $) -> Boolean
Time: 0 SEC.
compiling exported + : ($, $) -> $
Time: 0.01 SEC.
compiling exported * : ($, $) -> $
Time: 0.01 SEC.
compiling exported - : $ -> $
Time: 0 SEC.
compiling exported - : ($, $) -> $
Time: 0 SEC.
compiling exported * : (Integer, $) -> $
Time: 0.01 SEC.
compiling exported coerce : Integer -> $
Time: 0 SEC.
****** Domain: A already in scope
augmenting A: (Comparable)
(time taken in buildFunctor: 0)
;;; *** |FreeRing| REDEFINED
;;; *** |FreeRing| REDEFINED
Time: 0.02 SEC.
Semantic Errors:
[1] coerce: t has two modes:
Warnings:
[1] per: cannot pretend x of mode (Union (: sum (FreeSum (FreeAbelianGroup A) (FreeAbelianGroup $))) (: prd (FreeProduct (FreeMonoid A) (FreeMonoid $)))) to mode $
[2] coerce: prd has no value
[3] +: sum has no value
[4] *: prd has no value
[5] -: sum has no value
Cumulative Statistics for Constructor FreeRing
Time: 0.27 seconds
finalizing NRLIB FRING
Processing FreeRing for Browser database:
--->-->FreeRing((coerce (% A))): Not documented!!!!
--->-->FreeRing((- (% % %))): Not documented!!!!
--------constructor---------
; compiling file "/var/zope2/var/LatexWiki/FRING.NRLIB/FRING.lsp" (written 05 APR 2011 06:24:48 AM):
; /var/zope2/var/LatexWiki/FRING.NRLIB/FRING.fasl written
; compilation finished in 0:00:00.473
------------------------------------------------------------------------
FreeRing is now explicitly exposed in frame initial
FreeRing will be automatically loaded when needed from
/var/zope2/var/LatexWiki/FRING.NRLIB/FRING
>> System error:
The bounding indices 163 and 162 are bad for a sequence of length 162.
See also:
The ANSI Standard, Glossary entry for "bounding index designator"
The ANSI Standard, writeup for Issue SUBSEQ-OUT-OF-BOUNDS:IS-AN-ERRORf:=FreeRing(Symbol)
| (1) |
(a,b, c):f:=('a, 'b, 'c)
| (2) |
a*b+b*a
| (3) |
ab:=a+b
| (4) |
ac:=a*c
| (5) |
ab*ac
| (6) |
a^(-2)+b^2
Compiling function G785 with type Integer -> Boolean
There are 16 exposed and 17 unexposed library operations named ^
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue
)display op ^
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.
Cannot find a definition or applicable library operation named ^
with argument type(s)
FreeRing(Symbol)
Integer
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
a*b-b*a| (7) |
a+b-(a+b)
| (8) |
3*a+2*b+c
| (9) |