|
|
last edited 10 years ago by rrogers |
1 2 3 4 5 6 7 8 | ||
Editor: rrogers
Time: 2014/12/04 19:09:51 GMT+0 |
||
Note: edit test |
added:
From rrogers Thu Dec 4 19:09:49 +0000 2014
From: rrogers
Date: Thu, 04 Dec 2014 19:09:49 +0000
Subject: edit test
Message-ID: <20141204190949+0000@axiom-wiki.newsynthesis.org>
\begin{axiom}
Z==>Integer; Q==>Fraction Z
CP==>DistributedMultivariatePolynomial([a,b,c,u,v,w], Z)
CF==>Fraction CP
P==>DistributedMultivariatePolynomial([d,n,m], CF)
PX==>UnivariatePolynomial('x, P)
p(x:PX):PX == x*(1-x)
fp(x:PX):PX == u*x^2+v*x+w
q(y:PX):PX == a*y^2+b*y+c;
y:PX := m*x+n
r:PX := p(x) - d*q(y)
s:PX := fp(x) - d*q(y)
coeffs := coefficients r
fcoeffs := coefficients s
gb := groebner coeffs
fgb := groebner fcoeffs
egb: List Equation Fraction Polynomial Z := [p=0 for p in gb]
fegb: List Equation Fraction Polynomial Z := [p=0 for p in fgb]
ecoeffs: List Equation Fraction Polynomial Z := [p=0 for p in coeffs]
fecoeffs: List Equation Fraction Polynomial Z := [p=0 for p in fcoeffs]
cc:=solve(egb, [d,n,m]);
cc.1
dd:=solve(ecoeffs, [d,n,m]);
dd.1
fcc:=solve(fegb,[d,n,m]);
fcc.1
fdd:=solve(fecoeffs, [d,n,m]);
fdd.1
\end{axiom}
Application of Groebner Bases
Let $$p(x) = - x^2 + x, \qquad q(y) = a y^2 + b y + c.$$ Find d, m, n (depending on the coefficients a,b,c of q) such that for the transformaton $$y = m x + n$$ it holds $$p(x) = d q(m x + n).$$
Setup of the problem
(1) -> Z==>Integer; Q==>Fraction Z
CP==>DistributedMultivariatePolynomial([a,b, c], Z)
CF==>Fraction CP
P==>DistributedMultivariatePolynomial([d,n, m], CF)
PX==>UnivariatePolynomial('x,P)
p(x:PX):PX == x*(1-x)
Function declaration p : UnivariatePolynomial(x,DistributedMultivariatePolynomial([d, n, m], Fraction( DistributedMultivariatePolynomial([a, b, c], Integer)))) -> UnivariatePolynomial(x, DistributedMultivariatePolynomial([d, n, m], Fraction(DistributedMultivariatePolynomial([a, b, c], Integer)))) has been added to workspace.
q(y:PX):PX == a*y^2+b*y+c
Function declaration q : UnivariatePolynomial(x,DistributedMultivariatePolynomial([d, n, m], Fraction( DistributedMultivariatePolynomial([a, b, c], Integer)))) -> UnivariatePolynomial(x, DistributedMultivariatePolynomial([d, n, m], Fraction(DistributedMultivariatePolynomial([a, b, c], Integer)))) has been added to workspace.
y:PX := m*x+n\begin{equation} \label{eq1}{m \ x}+ n\end{equation}
r:PX := p(x) - d*q(y)
Compiling function p with type UnivariatePolynomial(x,DistributedMultivariatePolynomial([d, n, m], Fraction( DistributedMultivariatePolynomial([a, b, c], Integer)))) -> UnivariatePolynomial(x, DistributedMultivariatePolynomial([d, n, m], Fraction(DistributedMultivariatePolynomial([a, b, c], Integer))))
Compiling function q with type UnivariatePolynomial(x,DistributedMultivariatePolynomial([d, n, m], Fraction( DistributedMultivariatePolynomial([a, b, c], Integer)))) -> UnivariatePolynomial(x, DistributedMultivariatePolynomial([d, n, m], Fraction(DistributedMultivariatePolynomial([a, b, c], Integer))))
We must first extract the coefficients, since each coefficient of any power of x must vanish if the polynomial r is identically 0.
coeffs := coefficients r\begin{equation*} \label{eq3}\begin{array}{@{}l} \displaystyle \left[{-{a \ d \ {{m}^{2}}}- 1}, \:{-{2 \ a \ d \ n \ m}-{b \ d \ m}+ 1}, \: \right. \ \ \displaystyle \left.{-{a \ d \ {{n}^{2}}}-{b \ d \ n}-{c \ d}}\right] \end{array} \end{equation*}
Now we compute a Groebner basis and then solve for the respective variables.
gb := groebner coeffs\begin{equation*} \label{eq4}\begin{array}{@{}l} \displaystyle \left[{d -{\frac{a}{{4 \ a \ c}-{{b}^{2}}}}}, \:{n +{{\frac{1}{2}}\ m}+{\frac{b}{2 \ a}}}, \: \right. \ \ \displaystyle \left.{{{m}^{2}}+{\frac{{4 \ a \ c}-{{b}^{2}}}{{a}^{2}}}}\right] \end{array} \end{equation*}
egb: List Equation Fraction Polynomial Z := [p=0 for p in gb]\begin{equation*} \label{eq5}\begin{array}{@{}l} \displaystyle \left[{{\frac{{{\left({4 \ a \ c}-{{b}^{2}}\right)}\ d}- a}{{4 \ a \ c}-{{b}^{2}}}}= 0}, \: \right. \ \ \displaystyle \left.{{\frac{{2 \ a \ n}+{a \ m}+ b}{2 \ a}}= 0}, \:{{\frac{{{{a}^{2}}\ {{m}^{2}}}+{4 \ a \ c}-{{b}^{2}}}{{a}^{2}}}= 0}\right] \end{array} \end{equation*}
solve(egb,\begin{equation*} \label{eq6}\begin{array}{@{}l} \displaystyle \left[ \left[{d ={\frac{a}{{4 \ a \ c}-{{b}^{2}}}}}, \:{m ={\frac{-{2 \ a \ n}- b}{a}}}, \: \right. \ \ \displaystyle \left.{{{a \ {{n}^{2}}}+{b \ n}+ c}= 0}\right] \right] \end{array} \end{equation*}[d, m, n])
In fact, solve is powerful enough so that it is unnecessary to call the Buchberger algorithm explicitly.
ecoeffs: List Equation Fraction Polynomial Z := [p=0 for p in coeffs]\begin{equation*} \label{eq7}\begin{array}{@{}l} \displaystyle \left[{{-{a \ d \ {{m}^{2}}}- 1}= 0}, \:{{-{2 \ a \ d \ m \ n}-{b \ d \ m}+ 1}= 0}, \: \right. \ \ \displaystyle \left.{{-{a \ d \ {{n}^{2}}}-{b \ d \ n}-{c \ d}}= 0}\right] \end{array} \end{equation*}
solve(ecoeffs,\begin{equation*} \label{eq8}\begin{array}{@{}l} \displaystyle \left[ \left[{d ={\frac{a}{{4 \ a \ c}-{{b}^{2}}}}}, \:{m ={\frac{-{2 \ a \ n}- b}{a}}}, \: \right. \ \ \displaystyle \left.{{{a \ {{n}^{2}}}+{b \ n}+ c}= 0}\right] \right] \end{array} \end{equation*}[d, m, n])
Of course, the result depends on the order of the variables given to the solve command.
((Unfortunately, the axiom-wiki does not properly show the result, so we have added a semicolon to suppress the output.))
solve(ecoeffs,[d, n, m]);
===============================================================
---- Ordered variable lists. Poly_to_Gauss:=[d,\begin{equation*} \label{eq9}\left[ d , \: n , \: m \right]?\end{equation*}n, m]
Gauss_to_Poly:=[x,\begin{equation*} \label{eq10}\left[ x , \:{{m \ x}+ n}, \: a , \: b , \: c \right]?\end{equation*}y, a, b, c]
----coefficient arrays. corg := d* matrix [[c,\begin{equation*} \label{eq11}\left[ \begin{array}{ccc} {c \ d}&{b \ d}&{a \ d} \end{array} \right]\end{equation*}b, a]]
---- Explicit target cgauss := matrix [[0,\begin{equation*} \label{eq12}\left[ \begin{array}{ccc} 0 & 1 & - 1 \end{array} \right]\end{equation*}1, -1]]
---- Generalized target ctar := matrix [[w,\begin{equation*} \label{eq13}\left[ \begin{array}{ccc} w & v & u \end{array} \right]\end{equation*}v, u]]
---- polynomial basis arrays. xorg := matrix ([[1,\begin{equation*} \label{eq14}\left[ \begin{array}{ccc} 1 & x &{{x}^{2}} \end{array} \right]\end{equation*}x, x^2]])
xgauss := matrix([[1,\begin{equation*} \label{eq15}\left[ \begin{array}{ccc} 1 &{{m \ x}+ n}&{{{{m}^{2}}\ {{x}^{2}}}+{2 \ n \ m \ x}+{{n}^{2}}} \end{array} \right]\end{equation*}y, y^2]])
---- Example row(corg * transpose(xorg),\begin{equation*} \label{eq16}\left[{{a \ d \ {{x}^{2}}}+{b \ d \ x}+{c \ d}}\right]?\end{equation*}1)
---- Translation matrix Pascal Pa(n) for 3x3 case ---- see Aceto below for references. Pa(n) == matrix [[1,0, 0], [n, 1, 0], [n^2, 2*n, 1]]
---- Scalar matrix Sc(m) == diagonalMatrix [1,m, m^2]
---- Now define transform in matrix form D := corg -(cgauss * Pa(n) * Sc(m))
Compiling function Pa with type Variable(n) -> Matrix(Polynomial( Integer))
Compiling function Sc with type Variable(m) -> Matrix(Polynomial( Integer))
---- Now we do a more realistic solve in two steps ---- Step one disallow silly answers E:=groebnerFactorize(row(D,\begin{equation*} \label{eq18}\begin{array}{@{}l} \displaystyle \left[{ \begin{array}{@{}l} \displaystyle \left[{{{n}^{2}}- n +{c \ d}}, \:{{2 \ m \ n}- m +{b \ d}}, \: \right. \ \ \displaystyle \left.{{2 \ b \ d \ n}+{{\left(-{4 \ c \ d}+ 1 \right)}\ m}-{b \ d}}, \:{{2 \ a \ n}-{b \ m}- a}, \:{{{m}^{2}}+{a \ d}}, \: \right. \ \ \displaystyle \left.{{{\left({4 \ a \ c}-{{b}^{2}}\right)}\ d}- a}\right] \end{array} }, \right. \ \ \displaystyle \left.\:{\left[ 1 \right]?}\right] \end{array} \end{equation*}1), [b*d, m, a, b^2-3*a*c], true)
we found a groebner basis and check whether it contains reducible polynomials [1] factorGroebnerBasis: no reducible polynomials in this basis we found a groebner basis and check whether it contains reducible polynomials 2 [n - n + c d,2 m n - m + b d, 2 b d n + (- 4 c d + 1)m - b d, 2 2 2 a n - b m - a, m + a d, (4 a c - b )d - a] factorGroebnerBasis: no reducible polynomials in this basis
---- and clean it up (a lot). I wish these two steps could be one! solve(E.1,\begin{equation*} \label{eq19}\begin{array}{@{}l} \displaystyle \left[ \left[{d ={\frac{a}{{4 \ a \ c}-{{b}^{2}}}}}, \:{n ={\frac{{b \ m}+ a}{2 \ a}}}, \: \right. \ \ \displaystyle \left.{{{{\left({4 \ a \ c}-{{b}^{2}}\right)}\ {{m}^{2}}}+{{a}^{2}}}= 0}\right] \right] \end{array} \end{equation*}Poly_to_Gauss)
---- Now lets test the reasonableness the width to start with is ---- 2*sqrt(b^2-4*a*c)/(2*a) which the left hand term yields. There is a sign ambiguity ---- corresponding to whether the source quadratic is to the left or right. ---- I could swap n,\begin{equation*} \label{eq20}\left[ \begin{array}{ccc} {- w -{n \ v}-{{{n}^{2}}\ u}+{c \ d}}&{-{m \ v}-{2 \ m \ n \ u}+{b \ d}}&{-{{{m}^{2}}\ u}+{a \ d}} \end{array} \right]\end{equation*}m in solve() but then the n term (left hand one) is more obscure ---- Knowing the width m we can compute moving the center to 1/2 (for x*(1-x)) ---- It should amount to -b/(2*a)+1/2 ---- and in fact that is the answer n= m(scale factor)*(b/2a)+1/2 ---- d is required and in English is a "normalizing factor"
----General formulation Dorg := corg -(ctar * Pa(n) * Sc(m))
Z==>Integer; Q==>Fraction Z
CP==>DistributedMultivariatePolynomial([a,b, c, u, v, w], Z)
CF==>Fraction CP
P==>DistributedMultivariatePolynomial([d,n, m], CF)
PX==>UnivariatePolynomial('x,P)
p(x:PX):PX == x*(1-x)
Function declaration p : UnivariatePolynomial(x,DistributedMultivariatePolynomial([d, n, m], Fraction( DistributedMultivariatePolynomial([a, b, c, u, v, w], Integer)))) -> UnivariatePolynomial(x, DistributedMultivariatePolynomial([d, n, m], Fraction(DistributedMultivariatePolynomial([a, b, c, u, v, w], Integer) ))) has been added to workspace. Compiled code for p has been cleared. 1 old definition(s) deleted for function or rule p
fp(x:PX):PX == u*x^2+v*x+w
Function declaration fp : UnivariatePolynomial(x,DistributedMultivariatePolynomial([d, n, m], Fraction( DistributedMultivariatePolynomial([a, b, c, u, v, w], Integer)))) -> UnivariatePolynomial(x, DistributedMultivariatePolynomial([d, n, m], Fraction(DistributedMultivariatePolynomial([a, b, c, u, v, w], Integer) ))) has been added to workspace.
q(y:PX):PX == a*y^2+b*y+c;
Function declaration q : UnivariatePolynomial(x,DistributedMultivariatePolynomial([d, n, m], Fraction( DistributedMultivariatePolynomial([a, b, c, u, v, w], Integer)))) -> UnivariatePolynomial(x, DistributedMultivariatePolynomial([d, n, m], Fraction(DistributedMultivariatePolynomial([a, b, c, u, v, w], Integer) ))) has been added to workspace. Compiled code for q has been cleared. 1 old definition(s) deleted for function or rule q
y:PX := m*x+n
You cannot declare y to be of type UnivariatePolynomial(x,DistributedMultivariatePolynomial([d, n, m], Fraction( DistributedMultivariatePolynomial([a, b, c, u, v, w], Integer)))) because either the declared type of y or the type of the value of y is different from UnivariatePolynomial(x, DistributedMultivariatePolynomial([d, n, m], Fraction( DistributedMultivariatePolynomial([a, b, c, u, v, w], Integer)))) .
This is pdfTeX, Version 3.141592653-2.6-1.40.24 (TeX Live 2022/Debian) (preloaded format=latex) restricted \write18 enabled. entering extended mode (./5886600185195685314-16.0px.tex LaTeX2e <2022-11-01> patch level 1 L3 programming layer <2023-01-16> (/usr/share/texlive/texmf-dist/tex/latex/base/article.cls Document Class: article 2022/07/02 v1.4n Standard LaTeX document class (/usr/share/texlive/texmf-dist/tex/latex/base/size12.clo)) (/usr/share/texlive/texmf-dist/tex/latex/ucs/ucs.sty (/usr/share/texlive/texmf-dist/tex/latex/ucs/data/uni-global.def)) (/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty (/usr/share/texlive/texmf-dist/tex/latex/ucs/utf8x.def)) (/usr/share/texlive/texmf-dist/tex/latex/bbm-macros/bbm.sty) (/usr/share/texlive/texmf-dist/tex/latex/jknapltx/mathrsfs.sty) (/usr/share/texlive/texmf-dist/tex/latex/base/fontenc.sty) (/usr/share/texlive/texmf-dist/tex/latex/pstricks/pstricks.sty (/usr/share/texlive/texmf-dist/tex/generic/iftex/iftex.sty) (/usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty (/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/color.cfg) (/usr/share/texlive/texmf-dist/tex/latex/graphics-def/dvips.def) (/usr/share/texlive/texmf-dist/tex/latex/graphics/mathcolor.ltx) (/usr/share/texlive/texmf-dist/tex/latex/graphics/dvipsnam.def)) (/usr/share/texlive/texmf-dist/tex/generic/xkeyval/pst-xkey.tex (/usr/share/texlive/texmf-dist/tex/latex/xkeyval/xkeyval.sty (/usr/share/texlive/texmf-dist/tex/generic/xkeyval/xkeyval.tex (/usr/share/texlive/texmf-dist/tex/generic/xkeyval/xkvutils.tex (/usr/share/texlive/texmf-dist/tex/generic/xkeyval/keyval.tex))))) (/usr/share/texlive/texmf-dist/tex/generic/pstricks/pstricks.tex (/usr/share/texlive/texmf-dist/tex/generic/pstricks/pst-fp.tex `pst-fp' v0.06, 2020/11/20 (hv)) (/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgffor.sty (/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty (/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def) (/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex (/usr/share/texlive/texmf-dist/tex/generic/pgf/pgf.revision.tex))) (/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty (/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex (/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeyslibraryfiltered .code.tex))) (/usr/share/texlive/texmf-dist/tex/latex/pgf/math/pgfmath.sty (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code .tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonomet ric.code.tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.cod e.tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison .code.tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code. tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code .tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code. tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerari thmetics.code.tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex) (/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex))) (/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex)) `PSTricks' v3.18 <2022/11/28> (tvz,hv) --- We are running latex or xelatex --- (/usr/share/texlive/texmf-dist/tex/generic/pstricks/pstricks.con) (/usr/share/texlive/texmf-dist/tex/generic/pstricks/pstricks-color.tex) (/usr/share/texlive/texmf-dist/tex/generic/pstricks/pstricks-arrows.tex) (/usr/share/texlive/texmf-dist/tex/generic/pstricks/pstricks-dots.tex) (/usr/share/texlive/texmf-dist/tex/generic/pstricks/pstricks.con)) (/usr/share/texlive/texmf-dist/tex/generic/pstricks/pst-fp.tex `pst-fp' v0.06, 2020/11/20 (hv))) (/usr/share/texlive/texmf-dist/tex/latex/graphics/epsfig.sty (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty (/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty) (/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg)))) (/usr/share/texlive/texmf-dist/tex/latex/pst-grad/pst-grad.sty (/usr/share/texlive/texmf-dist/tex/generic/pst-grad/pst-grad.tex `pst-grad' v1.06, 2006/11/27 (tvz,dg,hv))) (/usr/share/texlive/texmf-dist/tex/latex/pst-plot/pst-plot.sty (/usr/share/texlive/texmf-dist/tex/latex/xkeyval/pst-xkey.sty) (/usr/share/texlive/texmf-dist/tex/latex/multido/multido.sty (/usr/share/texlive/texmf-dist/tex/generic/multido/multido.tex v1.42, 2010/05/14 <tvz>)) (/usr/share/texlive/texmf-dist/tex/generic/pst-plot/pst-plot.tex (/usr/share/texlive/texmf-dist/tex/generic/pst-tools/pst-tools.tex `PST-tools' v0.12, 2021/09/23 (hv)) (/usr/share/texlive/texmf-dist/tex/generic/pstricks-add/pstricks-add.tex (/usr/share/texlive/texmf-dist/tex/generic/pst-node/pst-node.tex v1.43, 2022/01/31) (/usr/share/texlive/texmf-dist/tex/generic/pst-arrow/pst-arrow.tex `pst-arrow' v0.05, 2021/11/16 (dr,hv)) (/usr/share/texlive/texmf-dist/tex/generic/pst-3d/pst-3d.tex `PST-3d' v1.11, 2010/02/14 (tvz)) (/usr/share/texlive/texmf-dist/tex/generic/pst-math/pst-math.tex `pst-math' v0.66 , (CJ,hv)) `pstricks-add' v3.93, 2022/11/21 (dr,hv)) v1.94, 2022/11/21 (tvz,hv))) (/usr/share/texlive/texmf-dist/tex/latex/geometry/geometry.sty (/usr/share/texlive/texmf-dist/tex/generic/iftex/ifvtex.sty)Package geometry Warning: `lmargin' and `rmargin' result in NEGATIVE (-108.405p t). `width' should be shortened in length.
) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty For additional information on amsmath, use the `?' option. (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty)) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty)) (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty) (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty) (/usr/share/texlive/texmf-dist/tex/latex/amscls/amsthm.sty) (/usr/share/texlive/texmf-dist/tex/latex/setspace/setspace.sty) (/usr/share/texlive/texmf-dist/tex/generic/xypic/xy.sty (/usr/share/texlive/texmf-dist/tex/generic/xypic/xy.tex Bootstrap'ing: catcodes, docmode, (/usr/share/texlive/texmf-dist/tex/generic/xypic/xyrecat.tex ) (/usr/share/texlive/texmf-dist/tex/generic/xypic/xyidioms.tex)
Xy-pic version 3.8.9 <2013/10/06> Copyright (c) 1991-2013 by Kristoffer H. Rose <krisrose@tug.org> and others Xy-pic is free software: see the User's Guide for details.
Loading kernel: messages; fonts; allocations: state, direction, utility macros; pictures: \xy, positions, objects, decorations; kernel objects: directionals, circles, text; options; algorithms: directions, edges, connections; Xy-pic loaded) (/usr/share/texlive/texmf-dist/tex/generic/iftex/ifpdf.sty)) (/usr/share/texlive/texmf-dist/tex/generic/xypic/xyall.tex Xy-pic option: All features v.3.8 (/usr/share/texlive/texmf-dist/tex/generic/xypic/xycurve.tex Xy-pic option: Curve and Spline extension v.3.12 curve, circles, loaded) (/usr/share/texlive/texmf-dist/tex/generic/xypic/xyframe.tex Xy-pic option: Frame and Bracket extension v.3.14 loaded) (/usr/share/texlive/texmf-dist/tex/generic/xypic/xycmtip.tex Xy-pic option: Computer Modern tip extension v.3.7 (/usr/share/texlive/texmf-dist/tex/generic/xypic/xytips.tex Xy-pic option: More Tips extension v.3.11 loaded) loaded) (/usr/share/texlive/texmf-dist/tex/generic/xypic/xyline.tex Xy-pic option: Line styles extension v.3.10 loaded) (/usr/share/texlive/texmf-dist/tex/generic/xypic/xyrotate.tex Xy-pic option: Rotate and Scale extension v.3.8 loaded) (/usr/share/texlive/texmf-dist/tex/generic/xypic/xycolor.tex Xy-pic option: Colour extension v.3.11 loaded) (/usr/share/texlive/texmf-dist/tex/generic/xypic/xymatrix.tex Xy-pic option: Matrix feature v.3.14 loaded) (/usr/share/texlive/texmf-dist/tex/generic/xypic/xyarrow.tex Xy-pic option: Arrow and Path feature v.3.9 path, \ar, loaded) (/usr/share/texlive/texmf-dist/tex/generic/xypic/xygraph.tex Xy-pic option: Graph feature v.3.11 loaded) loaded) (/usr/share/texlive/texmf-dist/tex/latex/tools/verbatim.sty) (/usr/share/texlive/texmf-dist/tex/latex/graphviz/graphviz.sty (/usr/share/texlive/texmf-dist/tex/latex/psfrag/psfrag.sty)) (/usr/share/texmf/tex/latex/sagetex.sty Writing sage input file 5886600185195685314-16.0px.sage ) (/usr/share/texlive/texmf-dist/tex/latex/gnuplottex/gnuplottex.sty (/usr/share/texlive/texmf-dist/tex/latex/moreverb/moreverb.sty) (/usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty) (/usr/share/texlive/texmf-dist/tex/generic/catchfile/catchfile.sty (/usr/share/texlive/texmf-dist/tex/generic/infwarerr/infwarerr.sty) (/usr/share/texlive/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty) (/usr/share/texlive/texmf-dist/tex/generic/etexcmds/etexcmds.sty))
Package gnuplottex Warning: Shell escape not enabled. (gnuplottex) You'll need to convert the graphs yourself.
) (/usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-dvips.def) No file 5886600185195685314-16.0px.aux. (/usr/share/texlive/texmf-dist/tex/latex/ucs/ucsencs.def) geometry driver: auto-detecting geometry detected driver: dvips (/usr/share/texlive/texmf-dist/tex/latex/jknapltx/ursfs.fd) (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd) (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd) [1] [2] [3] [4] [5] [6]
Package amsmath Warning: Foreign command \over; (amsmath) \frac or \genfrac should be used instead (amsmath) on input line 150.
[7] [8] Missing \right. inserted. <inserted text> \right . l.169 \
Extra \right. l.172 ...{n}^{2}}}+{b \ n}+ c}= 0}\right] \right]
[9] [10] Missing \right. inserted. <inserted text> \right . l.188 \
Extra \right. l.191 ...{n}^{2}}}+{b \ n}+ c}= 0}\right] \right]
[11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] Missing \right. inserted. <inserted text> \right . l.262 \
Extra \right. l.265 ... {{m}^{2}}}+{{a}^{2}}}= 0}\right] \right]
[22] [23] (./5886600185195685314-16.0px.aux)
LaTeX Warning: Label(s) may have changed. Rerun to get cross-references right.
) (see the transcript file for additional information) Output written on 5886600185195685314-16.0px.dvi (23 pages, 9328 bytes). Transcript written on 5886600185195685314-16.0px.log.