login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxTensorAlgebra2 revision 3 of 3

1 2 3
Editor: pagani
Time: 2020/02/01 17:45:54 GMT+0
Note:

added:
)show TENSALG


fricas
(1) -> <spad>
fricas
)abbrev domain TENSALG TensorAlgebra
TensorAlgebra(M,R,B) : Exports == Implementation where
M:FreeModuleCategory(R, B) R:CommutativeRing B:OrderedSet
OF ==> OutputForm NNI ==> NonNegativeInteger FMB ==> FreeMonoid B CTOF ==> CoercibleTo OutputForm FMCRB ==> FreeModuleCategory(R,FMB) GRALR ==> GradedAlgebra(R,NNI) XFABR ==> XFreeAlgebra(B,R) XDPBR ==> XDistributedPolynomial(B,R) TERM ==> Record(k:FMB,c:R)
Exports == Join(FMCRB, XFABR, GRALR) with
coerce : B -> % convert : FMB -> OutputForm
Implementation == XDPBR add
Rep := XDPBR
product(x,y) == x*y -- GradedAlgebra, pro forma
convert(x:FMB):OutputForm == x=1$FMB => empty()$OF length(x)$FMB = 1 => x::OF length(x)$FMB = 2 => tensor(first(x)::OF,rest(x)::OF)$OF tensor(first(x)::OF, convert(rest x))
coerce(x:%):OutputForm == zero? x => empty()$OF x=1$% => outputForm(1)$OF c:R:=leadingCoefficient(x) if c=1 then cof:=empty()$OF else cof:=c::OF kof:OF:=cof * convert(leadingSupport(x)) zero? reductum(x) => kof kof + reductum(x)::OF</spad>
fricas
Compiling FriCAS source code from file 
      /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/579490114000940455-25px001.spad
      using old system compiler.
   TENSALG abbreviates domain TensorAlgebra 
------------------------------------------------------------------------
   initializing NRLIB TENSALG for TensorAlgebra 
   compiling into NRLIB TENSALG 
   compiling exported product : (%,%) -> %
Time: 0 SEC.
compiling exported convert : FreeMonoid B -> OutputForm Time: 0 SEC.
compiling exported coerce : % -> OutputForm Time: 0 SEC.
****** Domain: R already in scope augmenting R: (Comparable) (time taken in buildFunctor: 3672)
;;; *** |TensorAlgebra| REDEFINED
;;; *** |TensorAlgebra| REDEFINED Time: 0 SEC.
Cumulative Statistics for Constructor TensorAlgebra Time: 0.02 seconds
--------------non extending category---------------------- .. TensorAlgebra(#1,#2,#3) of cat (|Join| (|FreeModuleCategory| |#2| (|FreeMonoid| |#3|)) (|XFreeAlgebra| |#3| |#2|) (|GradedAlgebra| |#2| (|NonNegativeInteger|)) (CATEGORY |domain| (SIGNATURE |coerce| (% |#3|)) (SIGNATURE |convert| ((|OutputForm|) (|FreeMonoid| |#3|))))) has no (|XPolynomialsCat| |#3| |#2|) finalizing NRLIB TENSALG Processing TensorAlgebra for Browser database: --->-->TensorAlgebra(constructor): Not documented!!!! --->-->TensorAlgebra((coerce (% B))): Not documented!!!! --->-->TensorAlgebra((convert ((OutputForm) (FreeMonoid B)))): Not documented!!!! --->-->TensorAlgebra(): Missing Description ; compiling file "/var/aw/var/LatexWiki/TENSALG.NRLIB/TENSALG.lsp" (written 10 OCT 2024 08:15:12 PM):
; wrote /var/aw/var/LatexWiki/TENSALG.NRLIB/TENSALG.fasl ; compilation finished in 0:00:00.024 ------------------------------------------------------------------------ TensorAlgebra is now explicitly exposed in frame initial TensorAlgebra will be automatically loaded when needed from /var/aw/var/LatexWiki/TENSALG.NRLIB/TENSALG

fricas
B:=OrderedVariableList [e[i] for i in 1..5]

\label{eq1}\hbox{\axiomType{OrderedVariableList}\ } \left({\left[{e_{1}}, \:{e_{2}}, \:{e_{3}}, \:{e_{4}}, \:{e_{5}}\right]}\right)(1)
Type: Type
fricas
e:=enumerate()$B

\label{eq2}\left[{e_{1}}, \:{e_{2}}, \:{e_{3}}, \:{e_{4}}, \:{e_{5}}\right](2)
Type: List(OrderedVariableList([e[1],e[2],e[3],e[4],e[5]]))
fricas
R:=Expression Integer

\label{eq3}\hbox{\axiomType{Expression}\ } \left({\hbox{\axiomType{Integer}\ }}\right)(3)
Type: Type
fricas
R has CommutativeRing

\label{eq4} \mbox{\rm true} (4)
Type: Boolean
fricas
M:=FreeModule(R, B)

\label{eq5}\hbox{\axiomType{FreeModule}\ } \left({{\hbox{\axiomType{Expression}\ } \left({\hbox{\axiomType{Integer}\ }}\right)}, \:{\hbox{\axiomType{OrderedVariableList}\ } \left({\left[{e_{1}}, \:{e_{2}}, \:{e_{3}}, \:{e_{4}}, \:{e_{5}}\right]}\right)}}\right)(5)
Type: Type
fricas
-- This is the object of interest
TA:=TensorAlgebra(M,R,B)

\label{eq6}\hbox{\axiomType{TensorAlgebra}\ } \left({{\hbox{\axiomType{FreeModule}\ } \left({{\hbox{\axiomType{Expression}\ } \left({\hbox{\axiomType{Integer}\ }}\right)}, \:{\hbox{\axiomType{OrderedVariableList}\ } \left({\left[{e_{1}}, \:{e_{2}}, \:{e_{3}}, \:{e_{4}}, \:{e_{5}}\right]}\right)}}\right)}, \:{\hbox{\axiomType{Expression}\ } \left({\hbox{\axiomType{Integer}\ }}\right)}, \:{\hbox{\axiomType{OrderedVariableList}\ } \left({\left[{e_{1}}, \:{e_{2}}, \:{e_{3}}, \:{e_{4}}, \:{e_{5}}\right]}\right)}}\right)(6)
Type: Type
fricas
-- coerce basis to TA
b:=[a::TA for a in e]

\label{eq7}\left[{\ {e_{1}}}, \:{\ {e_{2}}}, \:{\ {e_{3}}}, \:{\ {e_{4}}}, \:{\ {e_{5}}}\right](7)
Type: List(TensorAlgebra?(FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])),Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])))
fricas
v1:=x*b.1+y*b.2-z*b.3

\label{eq8}{x \ {e_{1}}}+{y \ {e_{2}}}-{z \ {e_{3}}}(8)
Type: TensorAlgebra?(FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])),Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]]))
fricas
v2:=y^n*b.1-cos(x)*b.2

\label{eq9}{{{y}^{n}}\ {e_{1}}}-{{\cos \left({x}\right)}\ {e_{2}}}(9)
Type: TensorAlgebra?(FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])),Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]]))
fricas
v3:=sin(x+y+z)*b.3

\label{eq10}{\sin \left({z + y + x}\right)}\ {e_{3}}(10)
Type: TensorAlgebra?(FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])),Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]]))
fricas
t0:=exp(-x-y-z)*1$TA

\label{eq11}{{e}^{- z - y - x}}\ (11)
Type: TensorAlgebra?(FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])),Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]]))
fricas
t1:=b.1*b.2*b.3*b.4+v1

\label{eq12}{\ {{e_{1}}\otimes{{e_{2}}\otimes{{e_{3}}\otimes{e_{4}}}}}}+{x \ {e_{1}}}+{y \ {e_{2}}}-{z \ {e_{3}}}(12)
Type: TensorAlgebra?(FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])),Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]]))
fricas
t2:=v1*v2+v1*v3*b.5+t0*b.4*b.3

\label{eq13}\begin{array}{@{}l}
\displaystyle
{x \ {\sin \left({z + y + x}\right)}\ {{e_{1}}\otimes{{e_{3}}\otimes{e_{5}}}}}+ 
\
\
\displaystyle
{y \ {\sin \left({z + y + x}\right)}\ {{e_{2}}\otimes{{e_{3}}\otimes{e_{5}}}}}- 
\
\
\displaystyle
{z \ {\sin \left({z + y + x}\right)}\ {{e_{3}}\otimes{{e_{3}}\otimes{e_{5}}}}}+{x \ {{y}^{n}}\ {{e_{1}}\otimes{e_{1}}}}- 
\
\
\displaystyle
{x \ {\cos \left({x}\right)}\ {{e_{1}}\otimes{e_{2}}}}+{y \ {{y}^{n}}\ {{e_{2}}\otimes{e_{1}}}}- 
\
\
\displaystyle
{y \ {\cos \left({x}\right)}\ {{e_{2}}\otimes{e_{2}}}}-{z \ {{y}^{n}}\ {{e_{3}}\otimes{e_{1}}}}+ 
\
\
\displaystyle
{z \ {\cos \left({x}\right)}\ {{e_{3}}\otimes{e_{2}}}}+{{{e}^{- z - y - x}}\ {{e_{4}}\otimes{e_{3}}}}
(13)
Type: TensorAlgebra?(FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])),Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]]))
fricas
-- product(x,y) same as x*y
p1:=product(v1,v2)

\label{eq14}\begin{array}{@{}l}
\displaystyle
{x \ {{y}^{n}}\ {{e_{1}}\otimes{e_{1}}}}-{x \ {\cos \left({x}\right)}\ {{e_{1}}\otimes{e_{2}}}}+{y \ {{y}^{n}}\ {{e_{2}}\otimes{e_{1}}}}- 
\
\
\displaystyle
{y \ {\cos \left({x}\right)}\ {{e_{2}}\otimes{e_{2}}}}-{z \ {{y}^{n}}\ {{e_{3}}\otimes{e_{1}}}}+ 
\
\
\displaystyle
{z \ {\cos \left({x}\right)}\ {{e_{3}}\otimes{e_{2}}}}
(14)
Type: TensorAlgebra?(FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])),Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]]))
fricas
p2:=product(product(v1,v3),t1)

\label{eq15}\begin{array}{@{}l}
\displaystyle
{x \ {\sin \left({z + y + x}\right)}\ {{e_{1}}\otimes{{e_{3}}\otimes{{e_{1}}\otimes{{e_{2}}\otimes{{e_{3}}\otimes{e_{4}}}}}}}}+ 
\
\
\displaystyle
{y \ {\sin \left({z + y + x}\right)}\ {{e_{2}}\otimes{{e_{3}}\otimes{{e_{1}}\otimes{{e_{2}}\otimes{{e_{3}}\otimes{e_{4}}}}}}}}- 
\
\
\displaystyle
{z \ {\sin \left({z + y + x}\right)}\ {{e_{3}}\otimes{{e_{3}}\otimes{{e_{1}}\otimes{{e_{2}}\otimes{{e_{3}}\otimes{e_{4}}}}}}}}+ 
\
\
\displaystyle
{{{x}^{2}}\ {\sin \left({z + y + x}\right)}\ {{e_{1}}\otimes{{e_{3}}\otimes{e_{1}}}}}+ 
\
\
\displaystyle
{x \  y \ {\sin \left({z + y + x}\right)}\ {{e_{1}}\otimes{{e_{3}}\otimes{e_{2}}}}}- 
\
\
\displaystyle
{x \  z \ {\sin \left({z + y + x}\right)}\ {{e_{1}}\otimes{{e_{3}}\otimes{e_{3}}}}}+ 
\
\
\displaystyle
{x \  y \ {\sin \left({z + y + x}\right)}\ {{e_{2}}\otimes{{e_{3}}\otimes{e_{1}}}}}+ 
\
\
\displaystyle
{{{y}^{2}}\ {\sin \left({z + y + x}\right)}\ {{e_{2}}\otimes{{e_{3}}\otimes{e_{2}}}}}- 
\
\
\displaystyle
{y \  z \ {\sin \left({z + y + x}\right)}\ {{e_{2}}\otimes{{e_{3}}\otimes{e_{3}}}}}- 
\
\
\displaystyle
{x \  z \ {\sin \left({z + y + x}\right)}\ {{e_{3}}\otimes{{e_{3}}\otimes{e_{1}}}}}- 
\
\
\displaystyle
{y \  z \ {\sin \left({z + y + x}\right)}\ {{e_{3}}\otimes{{e_{3}}\otimes{e_{2}}}}}+ 
\
\
\displaystyle
{{{z}^{2}}\ {\sin \left({z + y + x}\right)}\ {{e_{3}}\otimes{{e_{3}}\otimes{e_{3}}}}}
(15)
Type: TensorAlgebra?(FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])),Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]]))
fricas
p3:=tan(x)*1$TA

\label{eq16}{\tan \left({x}\right)}\ (16)
Type: TensorAlgebra?(FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])),Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]]))
fricas
s1:=p1+p2+p3

\label{eq17}\begin{array}{@{}l}
\displaystyle
{x \ {\sin \left({z + y + x}\right)}\ {{e_{1}}\otimes{{e_{3}}\otimes{{e_{1}}\otimes{{e_{2}}\otimes{{e_{3}}\otimes{e_{4}}}}}}}}+ 
\
\
\displaystyle
{y \ {\sin \left({z + y + x}\right)}\ {{e_{2}}\otimes{{e_{3}}\otimes{{e_{1}}\otimes{{e_{2}}\otimes{{e_{3}}\otimes{e_{4}}}}}}}}- 
\
\
\displaystyle
{z \ {\sin \left({z + y + x}\right)}\ {{e_{3}}\otimes{{e_{3}}\otimes{{e_{1}}\otimes{{e_{2}}\otimes{{e_{3}}\otimes{e_{4}}}}}}}}+ 
\
\
\displaystyle
{{{x}^{2}}\ {\sin \left({z + y + x}\right)}\ {{e_{1}}\otimes{{e_{3}}\otimes{e_{1}}}}}+ 
\
\
\displaystyle
{x \  y \ {\sin \left({z + y + x}\right)}\ {{e_{1}}\otimes{{e_{3}}\otimes{e_{2}}}}}- 
\
\
\displaystyle
{x \  z \ {\sin \left({z + y + x}\right)}\ {{e_{1}}\otimes{{e_{3}}\otimes{e_{3}}}}}+ 
\
\
\displaystyle
{x \  y \ {\sin \left({z + y + x}\right)}\ {{e_{2}}\otimes{{e_{3}}\otimes{e_{1}}}}}+ 
\
\
\displaystyle
{{{y}^{2}}\ {\sin \left({z + y + x}\right)}\ {{e_{2}}\otimes{{e_{3}}\otimes{e_{2}}}}}- 
\
\
\displaystyle
{y \  z \ {\sin \left({z + y + x}\right)}\ {{e_{2}}\otimes{{e_{3}}\otimes{e_{3}}}}}- 
\
\
\displaystyle
{x \  z \ {\sin \left({z + y + x}\right)}\ {{e_{3}}\otimes{{e_{3}}\otimes{e_{1}}}}}- 
\
\
\displaystyle
{y \  z \ {\sin \left({z + y + x}\right)}\ {{e_{3}}\otimes{{e_{3}}\otimes{e_{2}}}}}+ 
\
\
\displaystyle
{{{z}^{2}}\ {\sin \left({z + y + x}\right)}\ {{e_{3}}\otimes{{e_{3}}\otimes{e_{3}}}}}+{x \ {{y}^{n}}\ {{e_{1}}\otimes{e_{1}}}}- 
\
\
\displaystyle
{x \ {\cos \left({x}\right)}\ {{e_{1}}\otimes{e_{2}}}}+{y \ {{y}^{n}}\ {{e_{2}}\otimes{e_{1}}}}- 
\
\
\displaystyle
{y \ {\cos \left({x}\right)}\ {{e_{2}}\otimes{e_{2}}}}-{z \ {{y}^{n}}\ {{e_{3}}\otimes{e_{1}}}}+ 
\
\
\displaystyle
{z \ {\cos \left({x}\right)}\ {{e_{3}}\otimes{e_{2}}}}+{{\tan \left({x}\right)}\ }
(17)
Type: TensorAlgebra?(FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])),Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]]))
fricas
---
degree(v1*v2*v3*t1)

\label{eq18}7(18)
Type: PositiveInteger?
fricas
listOfTerms (v1*v1*v2*v3)

\label{eq19}\begin{array}{@{}l}
\displaystyle
\left[{\left[{k ={{{e_{1}}^{3}}\ {e_{3}}}}, \:{c ={{{x}^{2}}\ {\sin \left({z + y + x}\right)}\ {{y}^{n}}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{{e_{1}}^{2}}\ {e_{2}}\ {e_{3}}}}, \:{c = -{{{x}^{2}}\ {\cos \left({x}\right)}\ {\sin \left({z + y + x}\right)}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{e_{1}}\ {e_{2}}\ {e_{1}}\ {e_{3}}}}, \:{c ={x \  y \ {\sin \left({z + y + x}\right)}\ {{y}^{n}}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{e_{1}}\ {{e_{2}}^{2}}\ {e_{3}}}}, \:{c = -{x \  y \ {\cos \left({x}\right)}\ {\sin \left({z + y + x}\right)}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{e_{1}}\ {e_{3}}\ {e_{1}}\ {e_{3}}}}, \:{c = -{x \  z \ {\sin \left({z + y + x}\right)}\ {{y}^{n}}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{e_{1}}\ {e_{3}}\ {e_{2}}\ {e_{3}}}}, \:{c ={x \  z \ {\cos \left({x}\right)}\ {\sin \left({z + y + x}\right)}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{e_{2}}\ {{e_{1}}^{2}}\ {e_{3}}}}, \:{c ={x \  y \ {\sin \left({z + y + x}\right)}\ {{y}^{n}}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{e_{2}}\ {e_{1}}\ {e_{2}}\ {e_{3}}}}, \:{c = -{x \  y \ {\cos \left({x}\right)}\ {\sin \left({z + y + x}\right)}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{{e_{2}}^{2}}\ {e_{1}}\ {e_{3}}}}, \:{c ={{{y}^{2}}\ {\sin \left({z + y + x}\right)}\ {{y}^{n}}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{{e_{2}}^{3}}\ {e_{3}}}}, \:{c = -{{{y}^{2}}\ {\cos \left({x}\right)}\ {\sin \left({z + y + x}\right)}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{e_{2}}\ {e_{3}}\ {e_{1}}\ {e_{3}}}}, \:{c = -{y \  z \ {\sin \left({z + y + x}\right)}\ {{y}^{n}}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{e_{2}}\ {e_{3}}\ {e_{2}}\ {e_{3}}}}, \:{c ={y \  z \ {\cos \left({x}\right)}\ {\sin \left({z + y + x}\right)}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{e_{3}}\ {{e_{1}}^{2}}\ {e_{3}}}}, \:{c = -{x \  z \ {\sin \left({z + y + x}\right)}\ {{y}^{n}}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{e_{3}}\ {e_{1}}\ {e_{2}}\ {e_{3}}}}, \:{c ={x \  z \ {\cos \left({x}\right)}\ {\sin \left({z + y + x}\right)}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{e_{3}}\ {e_{2}}\ {e_{1}}\ {e_{3}}}}, \:{c = -{y \  z \ {\sin \left({z + y + x}\right)}\ {{y}^{n}}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{e_{3}}\ {{e_{2}}^{2}}\ {e_{3}}}}, \:{c ={y \  z \ {\cos \left({x}\right)}\ {\sin \left({z + y + x}\right)}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{{e_{3}}^{2}}\ {e_{1}}\ {e_{3}}}}, \:{c ={{{z}^{2}}\ {\sin \left({z + y + x}\right)}\ {{y}^{n}}}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k ={{{e_{3}}^{2}}\ {e_{2}}\ {e_{3}}}}, \:{c = -{{{z}^{2}}\ {\cos \left({x}\right)}\ {\sin \left({z + y + x}\right)}}}\right]}\right] (19)
Type: List(Record(k: FreeMonoid(OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])),c: Expression(Integer)))
fricas
degree (1$TA)

\label{eq20}0(20)
Type: NonNegativeInteger?
fricas
v1+1$TA

\label{eq21}{x \ {e_{1}}}+{y \ {e_{2}}}-{z \ {e_{3}}}+ 1(21)
Type: TensorAlgebra?(FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])),Expression(Integer),OrderedVariableList([e[1],e[2],e[3],e[4],e[5]]))
fricas
listOfTerms %

\label{eq22}\begin{array}{@{}l}
\displaystyle
\left[{\left[{k ={e_{1}}}, \:{c = x}\right]}, \:{\left[{k ={e_{2}}}, \:{c = y}\right]}, \:{\left[{k ={e_{3}}}, \:{c = - z}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k = 1}, \:{c = 1}\right]}\right] 
(22)
Type: List(Record(k: FreeMonoid(OrderedVariableList([e[1],e[2],e[3],e[4],e[5]])),c: Expression(Integer)))
fricas
-- degree (0$TA) ---> err in XDP ?? 
-- projection to TensorPower(n...) easy : filter degree = n
fricas
)show TENSALG
TensorAlgebra(M: FreeModuleCategory(R,B),R: CommutativeRing,B: OrderedSet) is a domain constructor Abbreviation for TensorAlgebra is TENSALG This constructor is exposed in this frame. ------------------------------- Operations --------------------------------
?*? : (%, %) -> % ?*? : (Integer, %) -> % ?*? : (B, %) -> % ?*? : (%, R) -> % ?*? : (R, %) -> % ?*? : (PositiveInteger, %) -> % ?+? : (%, %) -> % ?-? : (%, %) -> % -? : % -> % ?=? : (%, %) -> Boolean 1 : () -> % 0 : () -> % ?^? : (%, PositiveInteger) -> % annihilate? : (%, %) -> Boolean antiCommutator : (%, %) -> % associator : (%, %, %) -> % coef : (%, FreeMonoid(B)) -> R coef : (%, %) -> R coefficients : % -> List(R) coerce : Integer -> % coerce : R -> % coerce : FreeMonoid(B) -> % coerce : B -> % coerce : % -> OutputForm commutator : (%, %) -> % constant : % -> R constant? : % -> Boolean degree : % -> NonNegativeInteger latex : % -> String lquo : (%, B) -> % lquo : (%, FreeMonoid(B)) -> % lquo : (%, %) -> % map : ((R -> R), %) -> % mindeg : % -> FreeMonoid(B) mirror : % -> % monomial? : % -> Boolean monomials : % -> List(%) one? : % -> Boolean opposite? : (%, %) -> Boolean product : (%, %) -> % quasiRegular : % -> % quasiRegular? : % -> Boolean recip : % -> Union(%,"failed") retract : % -> R retract : % -> FreeMonoid(B) rquo : (%, B) -> % rquo : (%, FreeMonoid(B)) -> % rquo : (%, %) -> % sample : () -> % varList : % -> List(B) zero? : % -> Boolean ?~=? : (%, %) -> Boolean ?*? : (NonNegativeInteger, %) -> % ?^? : (%, NonNegativeInteger) -> % characteristic : () -> NonNegativeInteger coefficient : (%, FreeMonoid(B)) -> R construct : List(Record(k: FreeMonoid(B),c: R)) -> % constructOrdered : List(Record(k: FreeMonoid(B),c: R)) -> % if FreeMonoid(B) has COMPAR convert : FreeMonoid(B) -> OutputForm leadingCoefficient : % -> R if FreeMonoid(B) has COMPAR leadingMonomial : % -> % if FreeMonoid(B) has COMPAR leadingSupport : % -> FreeMonoid(B) if FreeMonoid(B) has COMPAR leadingTerm : % -> Record(k: FreeMonoid(B),c: R) if FreeMonoid(B) has COMPAR leftPower : (%, PositiveInteger) -> % leftPower : (%, NonNegativeInteger) -> % leftRecip : % -> Union(%,"failed") linearExtend : ((FreeMonoid(B) -> R), %) -> R if R has COMRING listOfTerms : % -> List(Record(k: FreeMonoid(B),c: R)) mindegTerm : % -> Record(k: FreeMonoid(B),c: R) monomial : (R, FreeMonoid(B)) -> % numberOfMonomials : % -> NonNegativeInteger plenaryPower : (%, PositiveInteger) -> % if R has COMRING reductum : % -> % if FreeMonoid(B) has COMPAR retractIfCan : % -> Union(R,"failed") retractIfCan : % -> Union(FreeMonoid(B),"failed") rightPower : (%, PositiveInteger) -> % rightPower : (%, NonNegativeInteger) -> % rightRecip : % -> Union(%,"failed") sh : (%, %) -> % if R has COMRING sh : (%, NonNegativeInteger) -> % if R has COMRING smaller? : (%, %) -> Boolean if R has COMPAR and FreeMonoid(B) has COMPAR subtractIfCan : (%, %) -> Union(%,"failed") support : % -> List(FreeMonoid(B))