login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox ProblemSolving revision 1 of 3

1 2 3
Editor:
Time: 2007/11/18 18:32:30 GMT-8
Note: ejercicio

changed:
-
  Mathe-Abi ab 2004

Aufgabe: Löse die Gleichung $e^{2x}+e^{x}-2=0$
 

Lösung: 
\begin{axiom}
g:=%e**(2*x)+%e**(x)-2=0
g:=g+2
f:=(2*x^2+2*x-1)/(x^2-1)
differentiate(f,x)
simplify(%)
f2:=3*(x^2-4*%e^(-2*x))
integrate(f2,x)
\end{axiom}

Comparar $ea(n)$ con ordenes como $n^k$, $2^n$, $n!$, $n^n$ donde
$ea(n)=\frac{1}{n-\log_2{2^n-1}}$

Intento:
\begin{axiom}
e:=1/(n-log(2^n-1))
simplify(e)
\end{axiom}

\begin{axiom}
solve(n+2-log((2^(n+1)-1)^2/(2^n-1));n)
\end{axiom}


Mathe-Abi ab 2004

Aufgabe: Löse die Gleichung LatexWiki Image

Lösung:

axiom
g:=%e**(2*x)+%e**(x)-2=0
LatexWiki Image(1)
Type: Equation Expression Integer
axiom
g:=g+2
LatexWiki Image(2)
Type: Equation Expression Integer
axiom
f:=(2*x^2+2*x-1)/(x^2-1)
LatexWiki Image(3)
Type: Fraction Polynomial Integer
axiom
differentiate(f,x)
LatexWiki Image(4)
Type: Fraction Polynomial Integer
axiom
simplify(%)
LatexWiki Image(5)
Type: Expression Integer
axiom
f2:=3*(x^2-4*%e^(-2*x))
LatexWiki Image(6)
Type: Expression Integer
axiom
integrate(f2,x)
LatexWiki Image(7)
Type: Union(Expression Integer,...)

Comparar LatexWiki Image con ordenes como LatexWiki Image, LatexWiki Image, LatexWiki Image, LatexWiki Image donde LatexWiki Image

Intento:

axiom
e:=1/(n-log(2^n-1))
LatexWiki Image(8)
Type: Expression Integer
axiom
simplify(e)
LatexWiki Image(9)
Type: Expression Integer

axiom
solve(n+2-log((2^(n+1)-1)^2/(2^n-1));n)
LatexWiki Image(10)
Type: List Equation Fraction Polynomial Integer