login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxPoirier revision 1 of 2

1 2
Editor: Bill Page
Time: 2015/07/31 18:17:05 GMT+0
Note:

changed:
-
Poirier to Hall

  1-D
\begin{axiom}
x := operator('x)
C:List Symbol := [subscript('x,[0])]
d := #C
J := matrix [[D(x(C(1),t),C(1))]]
K := inverse J
Req18a:=[reduce(+,[reduce(+,[reduce(+,[reduce(+,[ (1/4)*D( K(k,i)*K(m,j)*D( D( K(l,j),C(k) ),C(l) ),C(m) ) for m in 1..d]) for k in 1..d]) for j in 1..d]) for l in 1..d]) for i in 1..d]
diff1(n)==subscript('x,[n])-subscript('x,[n-1])
Req18b:=eval(Req18a,D(x(C(1),t),C(1))=diff1(n))
diff2(n)==diff1(n+1)-diff1(n)
diff2(n)
Req18c:=eval(Req18b,D(x(C(1),t),[C(1),C(1)])=diff2(n));
numer Req18c.1
diff3(n)==diff2(n)-diff2(n-1)
diff3(n)
Req18d:=eval(Req18c,D(x(C(1),t),[C(1),C(1),C(1)])=diff3(n));
numer Req18d.1
diff4(n)==diff3(n+1)-diff3(n)
diff4(n)
Req18e:=eval(Req18d,D(x(C(1),t),[C(1),C(1),C(1),C(1)])=diff4(n));
numer Req18e.1
factor %
\end{axiom}
2-D
\begin{axiom}
x := operator('x)
y := operator('y)
C:List Symbol := [subscript('x,[0]),subscript('y,[0])]
d := #C
J := matrix [[D(x(C(1),C(2),t),C(1)), D(x(C(1),C(2),t),C(2))], 
             [D(y(C(1),C(2),t),C(1)), D(y(C(1),C(2),t),C(2))]]
K := inverse J
Req18:=[reduce(+,[reduce(+,[reduce(+,[reduce(+,[
 (1/4)*D( K(k,i)*K(m,j)*D( D( K(l,j),C(k) ),C(l) ),C(m) )
   for m in 1..d]) for k in 1..d]) for j in 1..d]) for l in 1..d]) for i in 1..d];
#Req18
kernels Req18.1
\end{axiom}

Poirier to Hall

1-D

fricas
x := operator('x)

\label{eq1}x(1)
Type: BasicOperator?
fricas
C:List Symbol := [subscript('x,[0])]

\label{eq2}\left[{x_{0}}\right](2)
Type: List(Symbol)
fricas
d := #C

\label{eq3}1(3)
Type: PositiveInteger?
fricas
J := matrix [[D(x(C(1),t),C(1))]]

\label{eq4}\left[ 
\begin{array}{c}
{{x_{, 1}}\left({{x_{0}}, \: t}\right)}
(4)
Type: Matrix(Expression(Integer))
fricas
K := inverse J

\label{eq5}\left[ 
\begin{array}{c}
{1 \over{{x_{, 1}}\left({{x_{0}}, \: t}\right)}}
(5)
Type: Union(Matrix(Expression(Integer)),...)
fricas
Req18a:=[reduce(+,[reduce(+,[reduce(+,[reduce(+,[ (1/4)*D( K(k,i)*K(m,j)*D( D( K(l,j),C(k) ),C(l) ),C(m) ) for m in 1..d]) for k in 1..d]) for j in 1..d]) for l in 1..d]) for i in 1..d]

\label{eq6}\left[{-{{{{x_{, 1}}\left({{x_{0}}, \: t}\right)}^{2}}\ {{x_{{{{, 1}{, 1}}{, 1}}{, 1}}}\left({{x_{0}}, \: t}\right)}}+{8 \ {{x_{, 1}}\left({{x_{0}}, \: t}\right)}\ {{x_{{, 1}{, 1}}}\left({{x_{0}}, \: t}\right)}\ {{x_{{{, 1}{, 1}}{, 1}}}\left({{x_{0}}, \: t}\right)}}-{{10}\ {{{x_{{, 1}{, 1}}}\left({{x_{0}}, \: t}\right)}^{3}}}}\over{4 \ {{{x_{, 1}}\left({{x_{0}}, \: t}\right)}^{6}}}\right](6)
Type: List(Expression(Integer))
fricas
diff1(n)==subscript('x,[n])-subscript('x,[n-1])
Type: Void
fricas
Req18b:=eval(Req18a,D(x(C(1),t),C(1))=diff1(n))
fricas
Compiling function diff1 with type Variable(n) -> Polynomial(Integer
      )

\label{eq7}\left[{{{\left(-{{x_{n}}^{2}}+{2 \ {x_{n - 1}}\ {x_{n}}}-{{x_{n - 1}}^{2}}\right)}\ {{x_{{{{, 1}{, 1}}{, 1}}{, 1}}}\left({{x_{0}}, \: t}\right)}}+{{\left({8 \ {x_{n}}}-{8 \ {x_{n - 1}}}\right)}\ {{x_{{, 1}{, 1}}}\left({{x_{0}}, \: t}\right)}\ {{x_{{{, 1}{, 1}}{, 1}}}\left({{x_{0}}, \: t}\right)}}-{{10}\ {{{x_{{, 1}{, 1}}}\left({{x_{0}}, \: t}\right)}^{3}}}}\over{{4 \ {{x_{n}}^{6}}}-{{24}\ {x_{n - 1}}\ {{x_{n}}^{5}}}+{{60}\ {{x_{n - 1}}^{2}}\ {{x_{n}}^{4}}}-{{80}\ {{x_{n - 1}}^{3}}\ {{x_{n}}^{3}}}+{{60}\ {{x_{n - 1}}^{4}}\ {{x_{n}}^{2}}}-{{24}\ {{x_{n - 1}}^{5}}\ {x_{n}}}+{4 \ {{x_{n - 1}}^{6}}}}\right](7)
Type: List(Expression(Integer))
fricas
diff2(n)==diff1(n+1)-diff1(n)
Type: Void
fricas
diff2(n)
fricas
Compiling function diff1 with type Polynomial(Integer) -> Polynomial
      (Integer)
fricas
Compiling function diff2 with type Variable(n) -> Polynomial(Integer
      )

\label{eq8}-{2 \ {x_{n}}}+{x_{n + 1}}+{x_{n - 1}}(8)
Type: Polynomial(Integer)
fricas
Req18c:=eval(Req18b,D(x(C(1),t),[C(1),C(1)])=diff2(n));
Type: List(Expression(Integer))
fricas
numer Req18c.1

\label{eq9}\begin{array}{@{}l}
\displaystyle
{{\left(-{{x_{n}}^{2}}+{2 \ {x_{n - 1}}\ {x_{n}}}-{{x_{n - 1}}^{2}}\right)}\ {{x_{{{{, 1}{, 1}}{, 1}}{, 1}}}\left({{x_{0}}, \: t}\right)}}+ 
\
\
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
-{{16}\ {{x_{n}}^{2}}}+{{\left({8 \ {x_{n + 1}}}+{{24}\ {x_{n - 1}}}\right)}\ {x_{n}}}- 
\
\
\displaystyle
{8 \ {x_{n - 1}}\ {x_{n + 1}}}-{8 \ {{x_{n - 1}}^{2}}}
(9)
Type: SparseMultivariatePolynomial?(Integer,Kernel(Expression(Integer)))
fricas
diff3(n)==diff2(n)-diff2(n-1)
Type: Void
fricas
diff3(n)
fricas
Compiling function diff2 with type Polynomial(Integer) -> Polynomial
      (Integer)
fricas
Compiling function diff3 with type Variable(n) -> Polynomial(Integer
      )

\label{eq10}-{3 \ {x_{n}}}+{x_{n + 1}}+{3 \ {x_{n - 1}}}-{x_{n - 2}}(10)
Type: Polynomial(Integer)
fricas
Req18d:=eval(Req18c,D(x(C(1),t),[C(1),C(1),C(1)])=diff3(n));
Type: List(Expression(Integer))
fricas
numer Req18d.1

\label{eq11}\begin{array}{@{}l}
\displaystyle
{{\left(-{{x_{n}}^{2}}+{2 \ {x_{n - 1}}\ {x_{n}}}-{{x_{n - 1}}^{2}}\right)}\ {{x_{{{{, 1}{, 1}}{, 1}}{, 1}}}\left({{x_{0}}, \: t}\right)}}+{{128}\ {{x_{n}}^{3}}}+ 
\
\
\displaystyle
{{\left(-{{160}\ {x_{n + 1}}}-{{240}\ {x_{n - 1}}}+{{16}\ {x_{n - 2}}}\right)}\ {{x_{n}}^{2}}}+ 
\
\
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
{{68}\ {{x_{n + 1}}^{2}}}+{{\left({{192}\ {x_{n - 1}}}-{8 \ {x_{n - 2}}}\right)}\ {x_{n + 1}}}+ 
\
\
\displaystyle
{{156}\ {{x_{n - 1}}^{2}}}-{{24}\ {x_{n - 2}}\ {x_{n - 1}}}
(11)
Type: SparseMultivariatePolynomial?(Integer,Kernel(Expression(Integer)))
fricas
diff4(n)==diff3(n+1)-diff3(n)
Type: Void
fricas
diff4(n)
fricas
Compiling function diff3 with type Polynomial(Integer) -> Polynomial
      (Integer)
fricas
Compiling function diff4 with type Variable(n) -> Polynomial(Integer
      )

\label{eq12}{6 \ {x_{n}}}+{x_{n + 2}}-{4 \ {x_{n + 1}}}-{4 \ {x_{n - 1}}}+{x_{n - 2}}(12)
Type: Polynomial(Integer)
fricas
Req18e:=eval(Req18d,D(x(C(1),t),[C(1),C(1),C(1),C(1)])=diff4(n));
Type: List(Expression(Integer))
fricas
numer Req18e.1

\label{eq13}\begin{array}{@{}l}
\displaystyle
{{122}\ {{x_{n}}^{3}}}+{{\left({
\begin{array}{@{}l}
\displaystyle
-{x_{n + 2}}-{{156}\ {x_{n + 1}}}-{{224}\ {x_{n - 1}}}+ 
\
\
\displaystyle
{{15}\ {x_{n - 2}}}
(13)
Type: SparseMultivariatePolynomial?(Integer,Kernel(Expression(Integer)))
fricas
factor %

\label{eq14}\begin{array}{@{}l}
\displaystyle
{{122}\ {{x_{n}}^{3}}}+{{\left({
\begin{array}{@{}l}
\displaystyle
-{x_{n + 2}}-{{156}\ {x_{n + 1}}}-{{224}\ {x_{n - 1}}}+ 
\
\
\displaystyle
{{15}\ {x_{n - 2}}}
(14)
Type: Factored(SparseMultivariatePolynomial?(Integer,Kernel(Expression(Integer))))

2-D

fricas
x := operator('x)

\label{eq15}x(15)
Type: BasicOperator?
fricas
y := operator('y)

\label{eq16}y(16)
Type: BasicOperator?
fricas
C:List Symbol := [subscript('x,[0]),subscript('y,[0])]

\label{eq17}\left[{x_{0}}, \:{y_{0}}\right](17)
Type: List(Symbol)
fricas
d := #C

\label{eq18}2(18)
Type: PositiveInteger?
fricas
J := matrix [[D(x(C(1),C(2),t),C(1)), D(x(C(1),C(2),t),C(2))], 
             [D(y(C(1),C(2),t),C(1)), D(y(C(1),C(2),t),C(2))]]

\label{eq19}\left[ 
\begin{array}{cc}
{{x_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}&{{x_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}
\
{{y_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}&{{y_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}
(19)
Type: Matrix(Expression(Integer))
fricas
K := inverse J

\label{eq20}\left[ 
\begin{array}{cc}
-{{{y_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\over{{{{x_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}-{{{x_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}}}&{{{x_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\over{{{{x_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}-{{{x_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}}}
\
{{{y_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\over{{{{x_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}-{{{x_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}}}& -{{{x_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\over{{{{x_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}-{{{x_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}}}
(20)
Type: Union(Matrix(Expression(Integer)),...)
fricas
Req18:=[reduce(+,[reduce(+,[reduce(+,[reduce(+,[
 (1/4)*D( K(k,i)*K(m,j)*D( D( K(l,j),C(k) ),C(l) ),C(m) )
   for m in 1..d]) for k in 1..d]) for j in 1..d]) for l in 1..d]) for i in 1..d];
Type: List(Expression(Integer))
fricas
#Req18

\label{eq21}2(21)
Type: PositiveInteger?
fricas
kernels Req18.1

\label{eq22}\begin{array}{@{}l}
\displaystyle
\left[{{y_{{{{, 1}{, 1}}{, 1}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{{{, 1}{, 1}}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{{{, 1}{, 2}}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{y_{{{{, 1}{, 1}}{, 1}}{, 1}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{{{, 2}{, 2}}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{{{, 1}{, 1}}{, 1}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{x_{{{{, 1}{, 1}}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{{{, 1}{, 2}}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{{{, 1}{, 1}}{, 1}}{, 1}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{x_{{{{, 2}{, 2}}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{{, 1}{, 1}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{{, 1}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{y_{{{, 1}{, 1}}{, 1}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{{, 2}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{{, 1}{, 1}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{x_{{{, 1}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{{, 1}{, 1}}{, 1}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{{, 2}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{y_{{, 1}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{, 1}{, 1}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{, 2}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{x_{{, 1}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{, 1}{, 1}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{, 2}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{y_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\right] 
(22)
Type: List(Kernel(Expression(Integer)))