Matrix Example fricas (1) -> m1 := matrix([ [1, 
 Type: Matrix(Fraction(Polynomial(Integer))) 
fricas m2 := matrix([ [1, 
 Type: Matrix(Fraction(Polynomial(Integer))) 
fricas m3 := matrix([ [-1/y, 
 Type: Matrix(Fraction(Polynomial(Integer))) 
fricas m4 := matrix([ [1, 
 Type: Matrix(Fraction(Polynomial(Integer))) 
fricas m5 := matrix([ [1, 
 Type: Matrix(Fraction(Polynomial(Integer))) 
fricas m6 := matrix([ [0, 
 Type: Matrix(NonNegativeInteger?) 
fricas T := m1*m2*m3*m4*m5*m6 
 Type: Matrix(Fraction(Polynomial(Integer))) 
fricas M := matrix([ [0, 
 Type: Matrix(Polynomial(Integer)) 
fricas R := matrix([ [r, 
 Type: Matrix(Polynomial(Integer)) 
fricas T - R 
 Type: Matrix(Fraction(Polynomial(Integer))) 
fricas determinant(%) 
 Type: Fraction(Polynomial(Integer)) 
fricas T * vector([bx, 
 Type: Vector(Fraction(Polynomial(Integer))) 
fricas R := matrix([ [cos(t), 
 Type: Matrix(Expression(Integer)) 
fricas T := transpose(R) 
 Type: Matrix(Expression(Integer)) 
fricas e11 := matrix( [ [1, 
 Type: Matrix(NonNegativeInteger?) 
fricas e12 := matrix( [ [0, 
 Type: Matrix(NonNegativeInteger?) 
fricas e13 := matrix( [ [0, 
 Type: Matrix(NonNegativeInteger?) 
fricas e21 := matrix( [ [0, 
 Type: Matrix(NonNegativeInteger?) 
fricas e22 := matrix( [ [0, 
 Type: Matrix(NonNegativeInteger?) 
fricas e23 := matrix( [ [0, 
 Type: Matrix(NonNegativeInteger?) 
fricas e31 := matrix( [ [0, 
 Type: Matrix(NonNegativeInteger?) 
fricas e32 := matrix( [ [0, 
 Type: Matrix(NonNegativeInteger?) 
fricas e33 := matrix( [ [0, 
 Type: Matrix(NonNegativeInteger?) 
fricas T*e11*R 
 Type: Matrix(Expression(Integer)) 
fricas T*e12*R 
 Type: Matrix(Expression(Integer)) 
fricas T*e13*R 
 Type: Matrix(Expression(Integer)) 
fricas T*e21*R 
 Type: Matrix(Expression(Integer)) 
fricas T*e22*R 
 Type: Matrix(Expression(Integer)) 
fricas T*e23*R 
 Type: Matrix(Expression(Integer)) 
fricas T*e31*R 
 Type: Matrix(Expression(Integer)) 
fricas T*e32*R 
 Type: Matrix(Expression(Integer)) 
fricas T*e33*R 
 Type: Matrix(Expression(Integer)) 
 | 
      










![\label{eq12}\begin{array}{@{}l}
\displaystyle
\left[{\frac{-{bc \ {{z}^{2}}}-{bx \  x \  z}-{ \hbox{ by } \  x \  y}}{{y \ {{z}^{2}}}-{x \  y \  z}}}, \: \right.
\
\
\displaystyle
\left.{\frac{{{\left(- bx - bc \right)}\  z}-{ \hbox{ by } \  y}}{{{z}^{2}}-{x \  z}}}, \: \right.
\
\
\displaystyle
\left.{\frac{-{bc \  z}-{ \hbox{ by } \  y}-{bx \  x}}{{y \  z}-{x \  y}}}\right] 
 
\label{eq12}\begin{array}{@{}l}
\displaystyle
\left[{\frac{-{bc \ {{z}^{2}}}-{bx \  x \  z}-{ \hbox{ by } \  x \  y}}{{y \ {{z}^{2}}}-{x \  y \  z}}}, \: \right.
\
\
\displaystyle
\left.{\frac{{{\left(- bx - bc \right)}\  z}-{ \hbox{ by } \  y}}{{{z}^{2}}-{x \  z}}}, \: \right.
\
\
\displaystyle
\left.{\frac{-{bc \  z}-{ \hbox{ by } \  y}-{bx \  x}}{{y \  z}-{x \  y}}}\right]](images/5960888419084062908-16.0px.png)



















