login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxMIWHall revision 12 of 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Editor: Bill Page
Time: 2015/07/31 18:05:39 GMT+0
Note:

changed:
-[reduce(+,[reduce(+,[reduce(+,[reduce(+,[ (1/4)*D( K(k,i)*K(m,j)*D( D( K(l,j),C(k) ),C(l) ),C(m) ) for m in 1..d]) for k in 1..d]) for j in 1..d]) for l in 1..d]) for i in 1..d]
Req18a:=[reduce(+,[reduce(+,[reduce(+,[reduce(+,[ (1/4)*D( K(k,i)*K(m,j)*D( D( K(l,j),C(k) ),C(l) ),C(m) ) for m in 1..d]) for k in 1..d]) for j in 1..d]) for l in 1..d]) for i in 1..d]
diff1(n)==subscript('x,[n])-subscript('x,[n-1])
Req18b:=eval(Req18a,D(x(C(1),t),C(1))=diff1(n))
diff2(n)==diff1(n+1)-diff1(n)
diff2(n)
Req18c:=eval(Req18b,D(x(C(1),t),[C(1),C(1)])=diff2(n));
numer Req18c.1
diff3(n)==diff2(n)-diff2(n-1)
diff3(n)
Req18d:=eval(Req18c,D(x(C(1),t),[C(1),C(1),C(1)])=diff3(n));
numer Req18d.1
diff4(n)==diff3(n+1)-diff3(n)
diff4(n)
Req18e:=eval(Req18d,D(x(C(1),t),[C(1),C(1),C(1),C(1)])=diff4(n));
numer Req18e.1

Many Interacting Worlds - Hall, et al.

fricas
P:=operator('P);
Type: BasicOperator?
fricas
Q:=operator('Q);
Type: BasicOperator?
fricas
g:=operator('g);
Type: BasicOperator?
fricas
U:=operator('U);
Type: BasicOperator?
fricas
r:=operator('r);
Type: BasicOperator?
fricas
ℏ:=h;
Type: Variable(h)

Hall equations 15,19,20

fricas
eq15:= r(q) = -D(U(q),q)

\label{eq1}{r \left({q}\right)}= -{{U_{\ }^{,}}\left({q}\right)}(1)
Type: Equation(Expression(Integer))
fricas
eq19:= U(q) = 1/(2*m)*g(q)^2

\label{eq2}{U \left({q}\right)}={{{g \left({q}\right)}^{2}}\over{2 \  m}}(2)
Type: Equation(Expression(Integer))
fricas
eq20:= g(q) = ℏ/2 * 1/P(q)*D(P(q),q)

\label{eq3}{g \left({q}\right)}={{h \ {{P_{\ }^{,}}\left({q}\right)}}\over{2 \ {P \left({q}\right)}}}(3)
Type: Equation(Expression(Integer))
fricas
eval(eq19,eq20)

\label{eq4}{U \left({q}\right)}={{{{h}^{2}}\ {{{P_{\ }^{,}}\left({q}\right)}^{2}}}\over{8 \  m \ {{P \left({q}\right)}^{2}}}}(4)
Type: Equation(Expression(Integer))
fricas
RHall:=eval(eq15,D(lhs %,q)=D(rhs %,q))

\label{eq5}{r \left({q}\right)}={{-{{{h}^{2}}\ {P \left({q}\right)}\ {{P_{\ }^{,}}\left({q}\right)}\ {{P_{\ }^{, ,}}\left({q}\right)}}+{{{h}^{2}}\ {{{P_{\ }^{,}}\left({q}\right)}^{3}}}}\over{4 \  m \ {{P \left({q}\right)}^{3}}}}(5)
Type: Equation(Expression(Integer))

Hall equations 6, 7, A3

fricas
eq6:= r(q) = -D(Q(q),q)

\label{eq6}{r \left({q}\right)}= -{{Q_{\ }^{,}}\left({q}\right)}(6)
Type: Equation(Expression(Integer))
fricas
eq7:= Q(q) = 1/sqrt(P(q))*-ℏ^2/2/m*D(sqrt(P(q)),[q,q])

\label{eq7}{Q \left({q}\right)}={{{2 \ {{h}^{2}}\ {P \left({q}\right)}\ {{P_{\ }^{, ,}}\left({q}\right)}}-{{{h}^{2}}\ {{{P_{\ }^{,}}\left({q}\right)}^{2}}}}\over{8 \  m \ {{P \left({q}\right)}^{2}}}}(7)
Type: Equation(Expression(Integer))
fricas
Rforce:=eval(eq6,D(lhs eq7,q)=D(rhs eq7,q))

\label{eq8}\begin{array}{@{}l}
\displaystyle
{r \left({q}\right)}={{\left(
\begin{array}{@{}l}
\displaystyle
-{{{h}^{2}}\ {{P \left({q}\right)}^{2}}\ {{P_{\ }^{, , ,}}\left({q}\right)}}+ 
\
\
\displaystyle
{2 \ {{h}^{2}}\ {P \left({q}\right)}\ {{P_{\ }^{,}}\left({q}\right)}\ {{P_{\ }^{, ,}}\left({q}\right)}}-{{{h}^{2}}\ {{{P_{\ }^{,}}\left({q}\right)}^{3}}}
(8)
Type: Equation(Expression(Integer))

Gaussian

fricas
PdfNorm(x)==1/2*sqrt(2)*exp(-1/2*x^2)/sqrt(%pi)
Type: Void
fricas
eval(RHall,[P(q)=PdfNorm(q), _
            D(P(q),q)=D(PdfNorm(q),q), _
            D(P(q),[q,q])=D(PdfNorm(q),[q,q])])
fricas
Compiling function PdfNorm with type Variable(q) -> Expression(
      Integer)

\label{eq9}{r \left({q}\right)}= -{{{{h}^{2}}\  q}\over{4 \  m}}(9)
Type: Equation(Expression(Integer))
fricas
eval(Rforce, [P(q)=PdfNorm(q), _
              D(P(q),q)=D(PdfNorm(q),q), _
              D(P(q),[q,q])=D(PdfNorm(q),[q,q]), _
              D(P(q),[q,q,q])=D(PdfNorm(q),[q,q,q])])

\label{eq10}{r \left({q}\right)}= -{{{{h}^{2}}\  q}\over{4 \  m}}(10)
Type: Equation(Expression(Integer))

Cauchy

fricas
PdfCauchy(x)==1/%pi/(1+x^2)
Type: Void
fricas
eval(RHall,[P(q)=PdfCauchy(q), _
            D(P(q),q)=D(PdfCauchy(q),q), _
            D(P(q),[q,q])=D(PdfCauchy(q),[q,q])])
fricas
Compiling function PdfCauchy with type Variable(q) -> Expression(
      Integer)

\label{eq11}{r \left({q}\right)}={{{{{h}^{2}}\ {{q}^{3}}}-{{{h}^{2}}\  q}}\over{{m \ {{q}^{6}}}+{3 \  m \ {{q}^{4}}}+{3 \  m \ {{q}^{2}}}+ m}}(11)
Type: Equation(Expression(Integer))
fricas
eval(Rforce,[P(q)=PdfCauchy(q), _
             D(P(q),q)=D(PdfCauchy(q),q), _
             D(P(q),[q,q])=D(PdfCauchy(q),[q,q]), _
             D(P(q),[q,q,q])=D(PdfCauchy(q),[q,q,q])])

\label{eq12}{r \left({q}\right)}={{{2 \ {{h}^{2}}\ {{q}^{3}}}-{4 \ {{h}^{2}}\  q}}\over{{m \ {{q}^{6}}}+{3 \  m \ {{q}^{4}}}+{3 \  m \ {{q}^{2}}}+ m}}(12)
Type: Equation(Expression(Integer))

fricas
J(i,j)==matrix([[x[i,j]-x[i-1,j],y[i,j]-y[i-1,j]],[x[i,j]-x[j,j-1],y[i,j]-y[j,j-1]]])
Type: Void
fricas
J(i,j)
fricas
Compiling function J with type (Variable(i),Variable(j)) -> Matrix(
      Polynomial(Integer))

\label{eq13}\left[ 
\begin{array}{cc}
{{x_{i , \: j}}-{x_{{i - 1}, \: j}}}&{{y_{i , \: j}}-{y_{{i - 1}, \: j}}}
\
{-{x_{j , \:{j - 1}}}+{x_{i , \: j}}}&{-{y_{j , \:{j - 1}}}+{y_{i , \: j}}}
(13)
Type: Matrix(Polynomial(Integer))
fricas
determinant(J(i,j))

\label{eq14}\begin{array}{@{}l}
\displaystyle
{{\left(-{x_{i , \: j}}+{x_{{i - 1}, \: j}}\right)}\ {y_{j , \:{j - 1}}}}+{{\left({x_{j , \:{j - 1}}}-{x_{{i - 1}, \: j}}\right)}\ {y_{i , \: j}}}+ 
\
\
\displaystyle
{{\left(-{x_{j , \:{j - 1}}}+{x_{i , \: j}}\right)}\ {y_{{i - 1}, \: j}}}
(14)
Type: Polynomial(Integer)
fricas
K(i,j)==inverse(J(i,j))
Type: Void
fricas
K(i,j)
fricas
Compiling function K with type (Variable(i),Variable(j)) -> Union(
      Matrix(Fraction(Polynomial(Integer))),"failed")

\label{eq15}\left[ 
\begin{array}{cc}
{{{y_{j , \:{j - 1}}}-{y_{i , \: j}}}\over{{{\left({x_{i , \: j}}-{x_{{i - 1}, \: j}}\right)}\ {y_{j , \:{j - 1}}}}+{{\left(-{x_{j , \:{j - 1}}}+{x_{{i - 1}, \: j}}\right)}\ {y_{i , \: j}}}+{{\left({x_{j , \:{j - 1}}}-{x_{i , \: j}}\right)}\ {y_{{i - 1}, \: j}}}}}&{{{y_{i , \: j}}-{y_{{i - 1}, \: j}}}\over{{{\left({x_{i , \: j}}-{x_{{i - 1}, \: j}}\right)}\ {y_{j , \:{j - 1}}}}+{{\left(-{x_{j , \:{j - 1}}}+{x_{{i - 1}, \: j}}\right)}\ {y_{i , \: j}}}+{{\left({x_{j , \:{j - 1}}}-{x_{i , \: j}}\right)}\ {y_{{i - 1}, \: j}}}}}
\
{{-{x_{j , \:{j - 1}}}+{x_{i , \: j}}}\over{{{\left({x_{i , \: j}}-{x_{{i - 1}, \: j}}\right)}\ {y_{j , \:{j - 1}}}}+{{\left(-{x_{j , \:{j - 1}}}+{x_{{i - 1}, \: j}}\right)}\ {y_{i , \: j}}}+{{\left({x_{j , \:{j - 1}}}-{x_{i , \: j}}\right)}\ {y_{{i - 1}, \: j}}}}}&{{-{x_{i , \: j}}+{x_{{i - 1}, \: j}}}\over{{{\left({x_{i , \: j}}-{x_{{i - 1}, \: j}}\right)}\ {y_{j , \:{j - 1}}}}+{{\left(-{x_{j , \:{j - 1}}}+{x_{{i - 1}, \: j}}\right)}\ {y_{i , \: j}}}+{{\left({x_{j , \:{j - 1}}}-{x_{i , \: j}}\right)}\ {y_{{i - 1}, \: j}}}}}
(15)
Type: Union(Matrix(Fraction(Polynomial(Integer))),...)

Poirier

1-D

fricas
x := operator('x)
Compiled code for J has been cleared. Compiled code for K has been cleared.

\label{eq16}x(16)
Type: BasicOperator?
fricas
C:List Symbol := [subscript('x,[0])]

\label{eq17}\left[{x_{0}}\right](17)
Type: List(Symbol)
fricas
d := #C

\label{eq18}1(18)
Type: PositiveInteger?
fricas
J := matrix [[D(x(C(1),t),C(1))]]
Function definition for J is being overwritten.

\label{eq19}\left[ 
\begin{array}{c}
{{x_{, 1}}\left({{x_{0}}, \: t}\right)}
(19)
Type: Matrix(Expression(Integer))
fricas
K := inverse J
Function definition for K is being overwritten.

\label{eq20}\left[ 
\begin{array}{c}
{1 \over{{x_{, 1}}\left({{x_{0}}, \: t}\right)}}
(20)
Type: Union(Matrix(Expression(Integer)),...)
fricas
Req18a:=[reduce(+,[reduce(+,[reduce(+,[reduce(+,[ (1/4)*D( K(k,i)*K(m,j)*D( D( K(l,j),C(k) ),C(l) ),C(m) ) for m in 1..d]) for k in 1..d]) for j in 1..d]) for l in 1..d]) for i in 1..d]

\label{eq21}\left[{-{{{{x_{, 1}}\left({{x_{0}}, \: t}\right)}^{2}}\ {{x_{{{{, 1}{, 1}}{, 1}}{, 1}}}\left({{x_{0}}, \: t}\right)}}+{8 \ {{x_{, 1}}\left({{x_{0}}, \: t}\right)}\ {{x_{{, 1}{, 1}}}\left({{x_{0}}, \: t}\right)}\ {{x_{{{, 1}{, 1}}{, 1}}}\left({{x_{0}}, \: t}\right)}}-{{10}\ {{{x_{{, 1}{, 1}}}\left({{x_{0}}, \: t}\right)}^{3}}}}\over{4 \ {{{x_{, 1}}\left({{x_{0}}, \: t}\right)}^{6}}}\right](21)
Type: List(Expression(Integer))
fricas
diff1(n)==subscript('x,[n])-subscript('x,[n-1])
Type: Void
fricas
Req18b:=eval(Req18a,D(x(C(1),t),C(1))=diff1(n))
fricas
Compiling function diff1 with type Variable(n) -> Polynomial(Integer
      )

\label{eq22}\left[{{{\left(-{{x_{n}}^{2}}+{2 \ {x_{n - 1}}\ {x_{n}}}-{{x_{n - 1}}^{2}}\right)}\ {{x_{{{{, 1}{, 1}}{, 1}}{, 1}}}\left({{x_{0}}, \: t}\right)}}+{{\left({8 \ {x_{n}}}-{8 \ {x_{n - 1}}}\right)}\ {{x_{{, 1}{, 1}}}\left({{x_{0}}, \: t}\right)}\ {{x_{{{, 1}{, 1}}{, 1}}}\left({{x_{0}}, \: t}\right)}}-{{10}\ {{{x_{{, 1}{, 1}}}\left({{x_{0}}, \: t}\right)}^{3}}}}\over{{4 \ {{x_{n}}^{6}}}-{{24}\ {x_{n - 1}}\ {{x_{n}}^{5}}}+{{60}\ {{x_{n - 1}}^{2}}\ {{x_{n}}^{4}}}-{{80}\ {{x_{n - 1}}^{3}}\ {{x_{n}}^{3}}}+{{60}\ {{x_{n - 1}}^{4}}\ {{x_{n}}^{2}}}-{{24}\ {{x_{n - 1}}^{5}}\ {x_{n}}}+{4 \ {{x_{n - 1}}^{6}}}}\right](22)
Type: List(Expression(Integer))
fricas
diff2(n)==diff1(n+1)-diff1(n)
Type: Void
fricas
diff2(n)
fricas
Compiling function diff1 with type Polynomial(Integer) -> Polynomial
      (Integer)
fricas
Compiling function diff2 with type Variable(n) -> Polynomial(Integer
      )

\label{eq23}-{2 \ {x_{n}}}+{x_{n + 1}}+{x_{n - 1}}(23)
Type: Polynomial(Integer)
fricas
Req18c:=eval(Req18b,D(x(C(1),t),[C(1),C(1)])=diff2(n));
Type: List(Expression(Integer))
fricas
numer Req18c.1

\label{eq24}\begin{array}{@{}l}
\displaystyle
{{\left(-{{x_{n}}^{2}}+{2 \ {x_{n - 1}}\ {x_{n}}}-{{x_{n - 1}}^{2}}\right)}\ {{x_{{{{, 1}{, 1}}{, 1}}{, 1}}}\left({{x_{0}}, \: t}\right)}}+ 
\
\
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
-{{16}\ {{x_{n}}^{2}}}+{{\left({8 \ {x_{n + 1}}}+{{24}\ {x_{n - 1}}}\right)}\ {x_{n}}}- 
\
\
\displaystyle
{8 \ {x_{n - 1}}\ {x_{n + 1}}}-{8 \ {{x_{n - 1}}^{2}}}
(24)
Type: SparseMultivariatePolynomial?(Integer,Kernel(Expression(Integer)))
fricas
diff3(n)==diff2(n)-diff2(n-1)
Type: Void
fricas
diff3(n)
fricas
Compiling function diff2 with type Polynomial(Integer) -> Polynomial
      (Integer)
fricas
Compiling function diff3 with type Variable(n) -> Polynomial(Integer
      )

\label{eq25}-{3 \ {x_{n}}}+{x_{n + 1}}+{3 \ {x_{n - 1}}}-{x_{n - 2}}(25)
Type: Polynomial(Integer)
fricas
Req18d:=eval(Req18c,D(x(C(1),t),[C(1),C(1),C(1)])=diff3(n));
Type: List(Expression(Integer))
fricas
numer Req18d.1

\label{eq26}\begin{array}{@{}l}
\displaystyle
{{\left(-{{x_{n}}^{2}}+{2 \ {x_{n - 1}}\ {x_{n}}}-{{x_{n - 1}}^{2}}\right)}\ {{x_{{{{, 1}{, 1}}{, 1}}{, 1}}}\left({{x_{0}}, \: t}\right)}}+{{128}\ {{x_{n}}^{3}}}+ 
\
\
\displaystyle
{{\left(-{{160}\ {x_{n + 1}}}-{{240}\ {x_{n - 1}}}+{{16}\ {x_{n - 2}}}\right)}\ {{x_{n}}^{2}}}+ 
\
\
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
{{68}\ {{x_{n + 1}}^{2}}}+{{\left({{192}\ {x_{n - 1}}}-{8 \ {x_{n - 2}}}\right)}\ {x_{n + 1}}}+ 
\
\
\displaystyle
{{156}\ {{x_{n - 1}}^{2}}}-{{24}\ {x_{n - 2}}\ {x_{n - 1}}}
(26)
Type: SparseMultivariatePolynomial?(Integer,Kernel(Expression(Integer)))
fricas
diff4(n)==diff3(n+1)-diff3(n)
Type: Void
fricas
diff4(n)
fricas
Compiling function diff3 with type Polynomial(Integer) -> Polynomial
      (Integer)
fricas
Compiling function diff4 with type Variable(n) -> Polynomial(Integer
      )

\label{eq27}{6 \ {x_{n}}}+{x_{n + 2}}-{4 \ {x_{n + 1}}}-{4 \ {x_{n - 1}}}+{x_{n - 2}}(27)
Type: Polynomial(Integer)
fricas
Req18e:=eval(Req18d,D(x(C(1),t),[C(1),C(1),C(1),C(1)])=diff4(n));
Type: List(Expression(Integer))
fricas
numer Req18e.1

\label{eq28}\begin{array}{@{}l}
\displaystyle
{{122}\ {{x_{n}}^{3}}}+{{\left({
\begin{array}{@{}l}
\displaystyle
-{x_{n + 2}}-{{156}\ {x_{n + 1}}}-{{224}\ {x_{n - 1}}}+ 
\
\
\displaystyle
{{15}\ {x_{n - 2}}}
(28)
Type: SparseMultivariatePolynomial?(Integer,Kernel(Expression(Integer)))

2-D

fricas
x := operator('x)

\label{eq29}x(29)
Type: BasicOperator?
fricas
y := operator('y)

\label{eq30}y(30)
Type: BasicOperator?
fricas
C:List Symbol := [subscript('x,[0]),subscript('y,[0])]

\label{eq31}\left[{x_{0}}, \:{y_{0}}\right](31)
Type: List(Symbol)
fricas
d := #C

\label{eq32}2(32)
Type: PositiveInteger?
fricas
J := matrix [[D(x(C(1),C(2),t),C(1)), D(x(C(1),C(2),t),C(2))], 
             [D(y(C(1),C(2),t),C(1)), D(y(C(1),C(2),t),C(2))]]

\label{eq33}\left[ 
\begin{array}{cc}
{{x_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}&{{x_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}
\
{{y_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}&{{y_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}
(33)
Type: Matrix(Expression(Integer))
fricas
K := inverse J

\label{eq34}\left[ 
\begin{array}{cc}
-{{{y_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\over{{{{x_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}-{{{x_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}}}&{{{x_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\over{{{{x_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}-{{{x_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}}}
\
{{{y_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\over{{{{x_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}-{{{x_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}}}& -{{{x_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\over{{{{x_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}-{{{x_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\ {{y_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}}}}
(34)
Type: Union(Matrix(Expression(Integer)),...)
fricas
Req18:=[reduce(+,[reduce(+,[reduce(+,[reduce(+,[
 (1/4)*D( K(k,i)*K(m,j)*D( D( K(l,j),C(k) ),C(l) ),C(m) )
   for m in 1..d]) for k in 1..d]) for j in 1..d]) for l in 1..d]) for i in 1..d];
Type: List(Expression(Integer))
fricas
#Req18

\label{eq35}2(35)
Type: PositiveInteger?
fricas
kernels Req18.1

\label{eq36}\begin{array}{@{}l}
\displaystyle
\left[{{y_{{{{, 1}{, 1}}{, 1}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{{{, 1}{, 1}}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{{{, 1}{, 2}}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{y_{{{{, 1}{, 1}}{, 1}}{, 1}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{{{, 2}{, 2}}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{{{, 1}{, 1}}{, 1}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{x_{{{{, 1}{, 1}}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{{{, 1}{, 2}}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{{{, 1}{, 1}}{, 1}}{, 1}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{x_{{{{, 2}{, 2}}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{{, 1}{, 1}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{{, 1}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{y_{{{, 1}{, 1}}{, 1}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{{, 2}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{{, 1}{, 1}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{x_{{{, 1}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{{, 1}{, 1}}{, 1}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{{, 2}{, 2}}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{y_{{, 1}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{, 1}{, 1}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{{, 2}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{x_{{, 1}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{, 1}{, 1}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{{, 2}{, 2}}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \: \right.
\
\
\displaystyle
\left.{{y_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{y_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{, 1}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}, \:{{x_{, 2}}\left({{x_{0}}, \:{y_{0}}, \: t}\right)}\right] 
(36)
Type: List(Kernel(Expression(Integer)))