|
|
last edited 11 years ago by test1 |
1 2 3 4 5 6 7 8 9 10 11 | ||
Editor: Bill Page
Time: 2008/06/09 19:55:32 GMT-7 |
||
Note: Inequations as mathematical objects |
changed: - \begin{spad} )abbrev domain NE Inequation --FOR THE BENEFIT OF LIBAX0 GENERATION ++ Author: Bill Page ++ Based on: Equation by Stephen M. Watt, enhancements by Johannes Grabmeier ++ Date Created: June 2008 ++ Basic Operations: ~= ++ Related Domains: Equation ++ Also See: ++ AMS Classifications: ++ Keywords: inequation ++ Examples: ++ References: ++ Description: ++ Inequations as mathematical objects. All properties of the basis domain, ++ e.g. being an abelian group are carried over the equation domain, by ++ performing the structural operations on the left and on the ++ right hand side. -- The interpreter translates "~=" to "inequation". Otherwise, it will -- find a modemap for "~=" in the domain of the arguments. Inequation(S: Type): public == private where public ==> Type with "~=": (S, S) -> $ ++ a~=b creates an inequation. inequation: (S, S) -> $ ++ inequation(a,b) creates an inequation. swap: $ -> $ ++ swap(eq) interchanges left and right hand side of inequation eq. lhs: $ -> S ++ lhs(eqn) returns the left hand side of inequation eqn. rhs: $ -> S ++ rhs(eqn) returns the right hand side of inequation eqn. map: (S -> S, $) -> $ ++ map(f,eqn) constructs a new inequation by applying f to both ++ sides of eqn. (f must be an injection) if S has InnerEvalable(Symbol,S) then InnerEvalable(Symbol,S) if S has SetCategory then SetCategory CoercibleTo Boolean if S has Evalable(S) then eval: ($, Equation S) -> $ ++ eval(eqn, x=f) replaces x by f in inequation eqn. eval: ($, List Equation S) -> $ ++ eval(eqn, [x1=v1, ... xn=vn]) replaces xi by vi in inequation eqn. if S has AbelianSemiGroup then AbelianSemiGroup "+": (S, $) -> $ ++ x+eqn produces a new inequation by adding x to both sides of ++ inequation eqn. "+": ($, S) -> $ ++ eqn+x produces a new inequation by adding x to both sides of ++ inequation eqn. if S has AbelianGroup then AbelianGroup leftZero : $ -> $ ++ leftZero(eq) subtracts the left hand side. rightZero : $ -> $ ++ rightZero(eq) subtracts the right hand side. "-": (S, $) -> $ ++ x-eqn produces a new equation by subtracting both sides of ++ equation eqn from x. "-": ($, S) -> $ ++ eqn-x produces a new equation by subtracting x from both sides of ++ equation eqn. if S has SemiGroup then SemiGroup "*": (S, $) -> $ ++ x*eqn produces a new equation by multiplying both sides of ++ equation eqn by x. "*": ($, S) -> $ ++ eqn*x produces a new equation by multiplying both sides of ++ equation eqn by x. if S has Monoid then Monoid leftOne : $ -> Union($,"failed") ++ leftOne(eq) divides by the left hand side, if possible. rightOne : $ -> Union($,"failed") ++ rightOne(eq) divides by the right hand side, if possible. if S has Group then Group leftOne : $ -> Union($,"failed") ++ leftOne(eq) divides by the left hand side. rightOne : $ -> Union($,"failed") ++ rightOne(eq) divides by the right hand side. if S has Ring then Ring BiModule(S,S) if S has CommutativeRing then Module(S) --Algebra(S) if S has IntegralDomain then factorAndSplit : $ -> List $ ++ factorAndSplit(eq) make the right hand side 0 and ++ factors the new left hand side. Each factor is equated ++ to 0 and put into the resulting list without repetitions. if S has PartialDifferentialRing(Symbol) then PartialDifferentialRing(Symbol) if S has Field then VectorSpace(S) "/": ($, $) -> $ ++ e1/e2 produces a new equation by dividing the left and right ++ hand sides of equations e1 and e2. inv: $ -> $ ++ inv(x) returns the multiplicative inverse of x. if S has ExpressionSpace then subst: ($, $) -> $ ++ subst(eq1,eq2) substitutes eq2 into both sides of eq1 ++ the lhs of eq2 should be a kernel private ==> add Rep := Record(lhs: S, rhs: S) eq1,eq2: $ s : S if S has IntegralDomain then factorAndSplit eq == (S has factor : S -> Factored S) => eq0 := rightZero eq [inequation(rcf.factor,0) for rcf in factors factor lhs eq0] [eq] l:S ~= r:S == [l, r] inequation(l, r) == [l, r] -- hack! See comment above. lhs eqn == eqn.lhs rhs eqn == eqn.rhs swap eqn == [rhs eqn, lhs eqn] map(fn, eqn) == inequation(fn(eqn.lhs), fn(eqn.rhs)) if S has InnerEvalable(Symbol,S) then s:Symbol ls:List Symbol x:S lx:List S eval(eqn,s,x) == eval(eqn.lhs,s,x) ~= eval(eqn.rhs,s,x) eval(eqn,ls,lx) == eval(eqn.lhs,ls,lx) ~= eval(eqn.rhs,ls,lx) if S has Evalable(S) then eval(eqn1:$, eqn2:Equation S):$ == eval(eqn1.lhs, eqn2) ~= eval(eqn1.rhs, eqn2) eval(eqn1:$, leqn2:List Equation S):$ == eval(eqn1.lhs, leqn2) ~= eval(eqn1.rhs, leqn2) if S has SetCategory then eq1 = eq2 == (eq1.lhs = eq2.lhs)@Boolean and (eq1.rhs = eq2.rhs)@Boolean coerce(eqn:$):OutputForm == blankSeparate([eqn.lhs::OutputForm, "~=", eqn.rhs::OutputForm])$OutputForm coerce(eqn:$):Boolean == eqn.lhs ~= eqn.rhs if S has AbelianSemiGroup then eq1 + eq2 == eq1.lhs + eq2.lhs ~= eq1.rhs + eq2.rhs s + eq2 == [s,s] + eq2 eq1 + s == eq1 + [s,s] if S has AbelianGroup then - eq == (- lhs eq) ~= (-rhs eq) s - eq2 == [s,s] - eq2 eq1 - s == eq1 - [s,s] leftZero eq == 0 ~= rhs eq - lhs eq rightZero eq == lhs eq - rhs eq ~= 0 0 == inequation(0$S,0$S) eq1 - eq2 == eq1.lhs - eq2.lhs ~= eq1.rhs - eq2.rhs if S has SemiGroup then eq1:$ * eq2:$ == eq1.lhs * eq2.lhs ~= eq1.rhs * eq2.rhs l:S * eqn:$ == l * eqn.lhs ~= l * eqn.rhs l:S * eqn:$ == l * eqn.lhs ~= l * eqn.rhs eqn:$ * l:S == eqn.lhs * l ~= eqn.rhs * l -- We have to be a bit careful here: raising to a +ve integer is OK -- (since it's the equivalent of repeated multiplication) -- but other powers may cause contradictions -- Watch what else you add here! JHD 2/Aug 1990 if S has Monoid then 1 == inequation(1$S,1$S) recip eq == (lh := recip lhs eq) case "failed" => "failed" (rh := recip rhs eq) case "failed" => "failed" [lh :: S, rh :: S] leftOne eq == (re := recip lhs eq) case "failed" => "failed" 1 ~= rhs eq * re rightOne eq == (re := recip rhs eq) case "failed" => "failed" lhs eq * re ~= 1 if S has Group then inv eq == [inv lhs eq, inv rhs eq] leftOne eq == 1 ~= rhs eq * inv rhs eq rightOne eq == lhs eq * inv rhs eq ~= 1 if S has Ring then characteristic() == characteristic()$S i:Integer * eq:$ == (i::S) * eq if S has IntegralDomain then factorAndSplit eq == (S has factor : S -> Factored S) => eq0 := rightZero eq [inequation(rcf.factor,0) for rcf in factors factor lhs eq0] (S has Polynomial Integer) => eq0 := rightZero eq MF ==> MultivariateFactorize(Symbol, IndexedExponents Symbol, _ Integer, Polynomial Integer) p : Polynomial Integer := (lhs eq0) pretend Polynomial Integer [inequation((rcf.factor) pretend S,0) for rcf in factors factor(p)$MF] [eq] if S has PartialDifferentialRing(Symbol) then differentiate(eq:$, sym:Symbol):$ == [differentiate(lhs eq, sym), differentiate(rhs eq, sym)] if S has Field then dimension() == 2 :: CardinalNumber eq1:$ / eq2:$ == eq1.lhs / eq2.lhs ~= eq1.rhs / eq2.rhs inv eq == [inv lhs eq, inv rhs eq] if S has ExpressionSpace then subst(eq1,eq2) == eq3 := eq2 pretend Equation S [subst(lhs eq1,eq3),subst(rhs eq1,eq3)] \end{spad} It works but the LaTeX output does not display $\ne$ \begin{axiom} )set output tex on )set output algebra on inequation(a,b) inequation(2,3) equation(2,3) \end{axiom}
spad)abbrev domain NE Inequation --FOR THE BENEFIT OF LIBAX0 GENERATION ++ Author: Bill Page ++ Based on: Equation by Stephen M. Watt, enhancements by Johannes Grabmeier ++ Date Created: June 2008 ++ Basic Operations: ~= ++ Related Domains: Equation ++ Also See: ++ AMS Classifications: ++ Keywords: inequation ++ Examples: ++ References: ++ Description: ++ Inequations as mathematical objects. All properties of the basis domain, ++ e.g. being an abelian group are carried over the equation domain, by ++ performing the structural operations on the left and on the ++ right hand side. -- The interpreter translates "~=" to "inequation". Otherwise, it will -- find a modemap for "~=" in the domain of the arguments. Inequation(S: Type): public == private where public ==> Type with "~=": (S, S) -> $ ++ a~=b creates an inequation. inequation: (S, S) -> $ ++ inequation(a,b) creates an inequation. swap: $ -> $ ++ swap(eq) interchanges left and right hand side of inequation eq. lhs: $ -> S ++ lhs(eqn) returns the left hand side of inequation eqn. rhs: $ -> S ++ rhs(eqn) returns the right hand side of inequation eqn. map: (S -> S, $) -> $ ++ map(f,eqn) constructs a new inequation by applying f to both ++ sides of eqn. (f must be an injection) if S has InnerEvalable(Symbol,S) then InnerEvalable(Symbol,S) if S has SetCategory then SetCategory CoercibleTo Boolean if S has Evalable(S) then eval: ($, Equation S) -> $ ++ eval(eqn, x=f) replaces x by f in inequation eqn. eval: ($, List Equation S) -> $ ++ eval(eqn, [x1=v1, ... xn=vn]) replaces xi by vi in inequation eqn. if S has AbelianSemiGroup then AbelianSemiGroup "+": (S, $) -> $ ++ x+eqn produces a new inequation by adding x to both sides of ++ inequation eqn. "+": ($, S) -> $ ++ eqn+x produces a new inequation by adding x to both sides of ++ inequation eqn. if S has AbelianGroup then AbelianGroup leftZero : $ -> $ ++ leftZero(eq) subtracts the left hand side. rightZero : $ -> $ ++ rightZero(eq) subtracts the right hand side. "-": (S, $) -> $ ++ x-eqn produces a new equation by subtracting both sides of ++ equation eqn from x. "-": ($, S) -> $ ++ eqn-x produces a new equation by subtracting x from both sides of ++ equation eqn. if S has SemiGroup then SemiGroup "*": (S, $) -> $ ++ x*eqn produces a new equation by multiplying both sides of ++ equation eqn by x. "*": ($, S) -> $ ++ eqn*x produces a new equation by multiplying both sides of ++ equation eqn by x. if S has Monoid then Monoid leftOne : $ -> Union($,"failed") ++ leftOne(eq) divides by the left hand side, if possible. rightOne : $ -> Union($,"failed") ++ rightOne(eq) divides by the right hand side, if possible. if S has Group then Group leftOne : $ -> Union($,"failed") ++ leftOne(eq) divides by the left hand side. rightOne : $ -> Union($,"failed") ++ rightOne(eq) divides by the right hand side. if S has Ring then Ring BiModule(S,S) if S has CommutativeRing then Module(S) --Algebra(S) if S has IntegralDomain then factorAndSplit : $ -> List $ ++ factorAndSplit(eq) make the right hand side 0 and ++ factors the new left hand side. Each factor is equated ++ to 0 and put into the resulting list without repetitions. if S has PartialDifferentialRing(Symbol) then PartialDifferentialRing(Symbol) if S has Field then VectorSpace(S) "/": ($, $) -> $ ++ e1/e2 produces a new equation by dividing the left and right ++ hand sides of equations e1 and e2. inv: $ -> $ ++ inv(x) returns the multiplicative inverse of x. if S has ExpressionSpace then subst: ($, $) -> $ ++ subst(eq1,eq2) substitutes eq2 into both sides of eq1 ++ the lhs of eq2 should be a kernel private ==> add Rep := Record(lhs: S, rhs: S) eq1,eq2: $ s : S if S has IntegralDomain then factorAndSplit eq == (S has factor : S -> Factored S) => eq0 := rightZero eq [inequation(rcf.factor,0) for rcf in factors factor lhs eq0] [eq] l:S ~= r:S == [l, r] inequation(l, r) == [l, r] -- hack! See comment above. lhs eqn == eqn.lhs rhs eqn == eqn.rhs swap eqn == [rhs eqn, lhs eqn] map(fn, eqn) == inequation(fn(eqn.lhs), fn(eqn.rhs)) if S has InnerEvalable(Symbol,S) then s:Symbol ls:List Symbol x:S lx:List S eval(eqn,s,x) == eval(eqn.lhs,s,x) ~= eval(eqn.rhs,s,x) eval(eqn,ls,lx) == eval(eqn.lhs,ls,lx) ~= eval(eqn.rhs,ls,lx) if S has Evalable(S) then eval(eqn1:$, eqn2:Equation S):$ == eval(eqn1.lhs, eqn2) ~= eval(eqn1.rhs, eqn2) eval(eqn1:$, leqn2:List Equation S):$ == eval(eqn1.lhs, leqn2) ~= eval(eqn1.rhs, leqn2) if S has SetCategory then eq1 = eq2 == (eq1.lhs = eq2.lhs)@Boolean and (eq1.rhs = eq2.rhs)@Boolean coerce(eqn:$):OutputForm == blankSeparate([eqn.lhs::OutputForm, "~=", eqn.rhs::OutputForm])$OutputForm coerce(eqn:$):Boolean == eqn.lhs ~= eqn.rhs if S has AbelianSemiGroup then eq1 + eq2 == eq1.lhs + eq2.lhs ~= eq1.rhs + eq2.rhs s + eq2 == [s,s] + eq2 eq1 + s == eq1 + [s,s] if S has AbelianGroup then - eq == (- lhs eq) ~= (-rhs eq) s - eq2 == [s,s] - eq2 eq1 - s == eq1 - [s,s] leftZero eq == 0 ~= rhs eq - lhs eq rightZero eq == lhs eq - rhs eq ~= 0 0 == inequation(0$S,0$S) eq1 - eq2 == eq1.lhs - eq2.lhs ~= eq1.rhs - eq2.rhs if S has SemiGroup then eq1:$ * eq2:$ == eq1.lhs * eq2.lhs ~= eq1.rhs * eq2.rhs l:S * eqn:$ == l * eqn.lhs ~= l * eqn.rhs l:S * eqn:$ == l * eqn.lhs ~= l * eqn.rhs eqn:$ * l:S == eqn.lhs * l ~= eqn.rhs * l -- We have to be a bit careful here: raising to a +ve integer is OK -- (since it's the equivalent of repeated multiplication) -- but other powers may cause contradictions -- Watch what else you add here! JHD 2/Aug 1990 if S has Monoid then 1 == inequation(1$S,1$S) recip eq == (lh := recip lhs eq) case "failed" => "failed" (rh := recip rhs eq) case "failed" => "failed" [lh :: S, rh :: S] leftOne eq == (re := recip lhs eq) case "failed" => "failed" 1 ~= rhs eq * re rightOne eq == (re := recip rhs eq) case "failed" => "failed" lhs eq * re ~= 1 if S has Group then inv eq == [inv lhs eq, inv rhs eq] leftOne eq == 1 ~= rhs eq * inv rhs eq rightOne eq == lhs eq * inv rhs eq ~= 1 if S has Ring then characteristic() == characteristic()$S i:Integer * eq:$ == (i::S) * eq if S has IntegralDomain then factorAndSplit eq == (S has factor : S -> Factored S) => eq0 := rightZero eq [inequation(rcf.factor,0) for rcf in factors factor lhs eq0] (S has Polynomial Integer) => eq0 := rightZero eq MF ==> MultivariateFactorize(Symbol, IndexedExponents Symbol, _ Integer, Polynomial Integer) p : Polynomial Integer := (lhs eq0) pretend Polynomial Integer [inequation((rcf.factor) pretend S,0) for rcf in factors factor(p)$MF] [eq] if S has PartialDifferentialRing(Symbol) then differentiate(eq:$, sym:Symbol):$ == [differentiate(lhs eq, sym), differentiate(rhs eq, sym)] if S has Field then dimension() == 2 :: CardinalNumber eq1:$ / eq2:$ == eq1.lhs / eq2.lhs ~= eq1.rhs / eq2.rhs inv eq == [inv lhs eq, inv rhs eq] if S has ExpressionSpace then subst(eq1,eq2) == eq3 := eq2 pretend Equation S [subst(lhs eq1,eq3),subst(rhs eq1,eq3)]
Compiling FriCAS source code from file /var/zope2/var/LatexWiki/1462006071647286096-25px001.spad using old system compiler. NE abbreviates domain Inequation processing macro definition public ==> -- the constructor category processing macro definition private ==> -- the constructor capsule ------------------------------------------------------------------------ initializing NRLIB NE for Inequation compiling into NRLIB NE ****** Domain: S already in scope augmenting S: (IntegralDomain) augmenting $: (SIGNATURE $ factorAndSplit ((List $) $)) compiling exported factorAndSplit : $ -> List $ augmenting S: (SIGNATURE S factor ((Factored S) S)) Time: 0.10 SEC. compiling exported ~= : (S,S) -> $ NE;~=;2S$;2 is replaced by CONS Time: 0 SEC. compiling exported inequation : (S,S) -> $ NE;inequation;2S$;3 is replaced by CONS Time: 0 SEC. compiling exported lhs : $ -> S NE;lhs;$S;4 is replaced by QCAR Time: 0 SEC. compiling exported rhs : $ -> S NE;rhs;$S;5 is replaced by QCDR Time: 0 SEC. compiling exported swap : $ -> $ Time: 0 SEC. compiling exported map : (S -> S,$) -> $ Time: 0 SEC. ****** Domain: S already in scope augmenting S: (InnerEvalable (Symbol) S) compiling exported eval : ($,Symbol,S) -> $ Time: 0.01 SEC. compiling exported eval : ($,List Symbol,List S) -> $ Time: 0.01 SEC. ****** Domain: S already in scope augmenting S: (Evalable S) compiling exported eval : ($,Equation S) -> $ Time: 0 SEC. compiling exported eval : ($,List Equation S) -> $ Time: 0 SEC. ****** Domain: S already in scope augmenting S: (SetCategory) compiling exported = : ($,$) -> Boolean Time: 0.07 SEC. compiling exported coerce : $ -> OutputForm Time: 0 SEC. compiling exported coerce : $ -> Boolean Time: 0.01 SEC. ****** Domain: S already in scope augmenting S: (AbelianSemiGroup) augmenting $: (SIGNATURE $ + ($ S $)) augmenting $: (SIGNATURE $ + ($ $ S)) compiling exported + : ($,$) -> $ Time: 0 SEC. compiling exported + : (S,$) -> $ Time: 0 SEC. compiling exported + : ($,S) -> $ Time: 0 SEC. ****** Domain: S already in scope augmenting S: (AbelianGroup) augmenting $: (SIGNATURE $ leftZero ($ $)) augmenting $: (SIGNATURE $ rightZero ($ $)) augmenting $: (SIGNATURE $ - ($ S $)) augmenting $: (SIGNATURE $ - ($ $ S)) compiling exported - : $ -> $ Time: 0.01 SEC. compiling exported - : (S,$) -> $ Time: 0 SEC. compiling exported - : ($,S) -> $ Time: 0 SEC. compiling exported leftZero : $ -> $ Time: 0 SEC. compiling exported rightZero : $ -> $ Time: 0 SEC. compiling exported Zero : () -> $ Time: 0 SEC. compiling exported - : ($,$) -> $ Time: 0 SEC. ****** Domain: S already in scope augmenting S: (SemiGroup) augmenting $: (SIGNATURE $ * ($ S $)) augmenting $: (SIGNATURE $ * ($ $ S)) compiling exported * : ($,$) -> $ Time: 0.01 SEC. compiling exported * : (S,$) -> $ Time: 0 SEC. compiling exported * : (S,$) -> $ Time: 0 SEC. compiling exported * : ($,S) -> $ Time: 0 SEC. ****** Domain: S already in scope augmenting S: (Monoid) augmenting $: (SIGNATURE $ leftOne ((Union $ failed) $)) augmenting $: (SIGNATURE $ rightOne ((Union $ failed) $)) compiling exported One : () -> $ Time: 0 SEC. compiling exported recip : $ -> Union($,failed) Time: 0 SEC. compiling exported leftOne : $ -> Union($,failed) Time: 0.01 SEC. compiling exported rightOne : $ -> Union($,failed) Time: 0 SEC. ****** Domain: S already in scope augmenting S: (Group) augmenting $: (SIGNATURE $ leftOne ((Union $ failed) $)) augmenting $: (SIGNATURE $ rightOne ((Union $ failed) $)) compiling exported inv : $ -> $ Time: 0.01 SEC. compiling exported leftOne : $ -> Union($,failed) Time: 0 SEC. compiling exported rightOne : $ -> Union($,failed) Time: 0 SEC. ****** Domain: S already in scope augmenting S: (Ring) compiling exported characteristic : () -> NonNegativeInteger Time: 0.06 SEC. compiling exported * : (Integer,$) -> $ Time: 0 SEC. ****** Domain: S already in scope augmenting S: (IntegralDomain) augmenting $: (SIGNATURE $ factorAndSplit ((List $) $)) compiling exported factorAndSplit : $ -> List $ augmenting S: (SIGNATURE S factor ((Factored S) S)) extension of ##1 to (Polynomial (Integer)) ignored processing macro definition MF ==> MultivariateFactorize(Symbol,IndexedExponents Symbol,Integer,Polynomial Integer) Time: 0.18 SEC. ****** Domain: S already in scope augmenting S: (PartialDifferentialRing (Symbol)) compiling exported differentiate : ($,Symbol) -> $ Time: 0 SEC. ****** Domain: S already in scope augmenting S: (Field) augmenting $: (SIGNATURE $ / ($ $ $)) augmenting $: (SIGNATURE $ inv ($ $)) compiling exported dimension : () -> CardinalNumber Time: 0.02 SEC. compiling exported / : ($,$) -> $ Time: 0 SEC. compiling exported inv : $ -> $ Time: 0 SEC. ****** Domain: S already in scope augmenting S: (ExpressionSpace) augmenting $: (SIGNATURE $ subst ($ $ $)) compiling exported subst : ($,$) -> $ Time: 0 SEC. ****** Domain: S already in scope augmenting S: (Evalable S) ****** Domain: S already in scope augmenting S: (SetCategory) augmenting $: (SIGNATURE $ eval ($ $ (Equation S))) augmenting $: (SIGNATURE $ eval ($ $ (List (Equation S)))) ****** Domain: S already in scope augmenting S: (AbelianGroup) augmenting $: (SIGNATURE $ leftZero ($ $)) augmenting $: (SIGNATURE $ rightZero ($ $)) augmenting $: (SIGNATURE $ - ($ S $)) augmenting $: (SIGNATURE $ - ($ $ S)) ****** Domain: S already in scope augmenting S: (Field) augmenting $: (SIGNATURE $ / ($ $ $)) augmenting $: (SIGNATURE $ inv ($ $)) ****** Domain: S already in scope augmenting S: (AbelianGroup) augmenting $: (SIGNATURE $ leftZero ($ $)) augmenting $: (SIGNATURE $ rightZero ($ $)) augmenting $: (SIGNATURE $ - ($ S $)) augmenting $: (SIGNATURE $ - ($ $ S)) ****** Domain: S already in scope augmenting S: (AbelianSemiGroup) augmenting $: (SIGNATURE $ + ($ S $)) augmenting $: (SIGNATURE $ + ($ $ S)) ****** Domain: S already in scope augmenting S: (ExpressionSpace) augmenting $: (SIGNATURE $ subst ($ $ $)) ****** Domain: S already in scope augmenting S: (Field) augmenting $: (SIGNATURE $ / ($ $ $)) augmenting $: (SIGNATURE $ inv ($ $)) ****** Domain: S already in scope augmenting S: (Group) augmenting $: (SIGNATURE $ leftOne ((Union $ failed) $)) augmenting $: (SIGNATURE $ rightOne ((Union $ failed) $)) ****** Domain: S already in scope augmenting S: (InnerEvalable (Symbol) S) ****** Domain: S already in scope augmenting S: (IntegralDomain) augmenting $: (SIGNATURE $ factorAndSplit ((List $) $)) ****** Domain: S already in scope augmenting S: (Monoid) augmenting $: (SIGNATURE $ leftOne ((Union $ failed) $)) augmenting $: (SIGNATURE $ rightOne ((Union $ failed) $)) ****** Domain: S already in scope augmenting S: (PartialDifferentialRing (Symbol)) ****** Domain: S already in scope augmenting S: (Ring) ****** Domain: S already in scope augmenting S: (SemiGroup) augmenting $: (SIGNATURE $ * ($ S $)) augmenting $: (SIGNATURE $ * ($ $ S)) ****** Domain: S already in scope augmenting S: (SetCategory) (time taken in buildFunctor: 3) ;;; *** |Inequation| REDEFINED ;;; *** |Inequation| REDEFINED Time: 0.14 SEC. Semantic Errors: [1] factorAndSplit: rcf has two modes: Warnings: [1] factorAndSplit: not known that (IntegralDomain) is of mode (CATEGORY domain (SIGNATURE factorAndSplit ((List $) $))) [2] factorAndSplit: not known that (IntegralDomain) is of mode (CATEGORY S (SIGNATURE factor ((Factored S) S))) Cumulative Statistics for Constructor Inequation Time: 0.64 seconds finalizing NRLIB NE Processing Inequation for Browser database: --------(~= ($ S S))--------- --------(inequation ($ S S))--------- --------(swap ($ $))--------- --------(lhs (S $))--------- --------(rhs (S $))--------- --------(map ($ (Mapping S S) $))--------- --------(eval ($ $ (Equation S)))--------- --------(eval ($ $ (List (Equation S))))--------- --------(+ ($ S $))--------- --------(+ ($ $ S))--------- --------(leftZero ($ $))--------- --------(rightZero ($ $))--------- --------(- ($ S $))--------- --------(- ($ $ S))--------- --------(* ($ S $))--------- --------(* ($ $ S))--------- --------(leftOne ((Union $ failed) $))--------- --------(rightOne ((Union $ failed) $))--------- --------(leftOne ((Union $ failed) $))--------- --------(rightOne ((Union $ failed) $))--------- --------(factorAndSplit ((List $) $))--------- --------(/ ($ $ $))--------- --------(inv ($ $))--------- --------(subst ($ $ $))--------- --------constructor--------- ; (DEFUN |Inequation;| ...) is being compiled. ;; The variable IDENTITY is undefined. ;; The compiler will assume this variable is a global. ------------------------------------------------------------------------ Inequation is now explicitly exposed in frame initial Inequation will be automatically loaded when needed from /var/zope2/var/LatexWiki/NE.NRLIB/code
It works but the LaTeX? output does not display
axiom)set output tex on )set output algebra on inequation(a,b) (1) a ~= b
(1) |
axiominequation(2,3) (2) 2 ~= 3
(2) |
axiomequation(2,3) (3) 2= 3
(3) |