|
|
last edited 11 years ago by test1 |
1 2 3 4 5 6 | ||
Editor: Bill Page
Time: 2009/05/13 11:13:48 GMT-7 |
||
Note: first example |
On Fri, May 15, 2009 at 03:23:33AM +0200, Franz Lehner wrote:
Now it more or less works, included is a first example of a bialgebra (just too lazy to write up the antipode):
)library TENSORC TENSORP TENSORD
TensorProductCategory is now explicitly exposed in frame initial TensorProductCategory will be automatically loaded when needed from /var/zope2/var/LatexWiki/TENSORC.NRLIB/TENSORC TensorProductProperty is now explicitly exposed in frame initial TensorProductProperty will be automatically loaded when needed from /var/zope2/var/LatexWiki/TENSORP.NRLIB/TENSORP TensorProduct is now explicitly exposed in frame initial TensorProduct will be automatically loaded when needed from /var/zope2/var/LatexWiki/TENSORD.NRLIB/TENSORD
)abbrev category COALG CoAlgebra CoAlgebra(R : CommutativeRing, RR : TensorProductCategory(R, %, %)) : Category == _ Module(R) with Delta : % -> RR ++ delta is comultiplication counit: % -> R ++ counit )abbrev category BIALG BiAlgebra BiAlgebra(R : CommutativeRing, RR : TensorProductCategory(R, %, %)) : Category == _ Join(Algebra(R), CoAlgebra(R, RR)) )abbrev category HOPFALG HopfAlgebra HopfAlgebra(R : CommutativeRing, RR : TensorProductCategory(R, %, %)) : Category _ == BiAlgebra(R, RR) with S : % -> % ++ the antipode )abbrev domain PHALG PolyHopfAlgebra PolyHopfAlgebra(R: CommutativeRing,x: Symbol): C == T where S == Variable x FM == FreeMonoid Symbol PxP == TensorProduct(R, FM, FM, %, %) -- C == Join(FreeModule(R, FM),HopfAlgebra(R, PxP)) C == Join(UnivariatePolynomialCategory(R), _ FreeModuleCat(R, FM), BiAlgebra(R, PxP))
TERM == Record(k: FM,c: R)
T == SparseUnivariatePolynomial(R) add Rep:= SparseUnivariatePolynomial(R)
monom(a:FM,r:R):% == one? a => monomial(r, 0@NonNegativeInteger) monomial(r, nthExpon(a, 1@Integer))
-- monomial(r:R, n:NonNegativeInteger) == monomial(r,n)@Rep
coerce(p:%):OutputForm == outputForm(p,outputForm x)$Rep
Delta1(n:NonNegativeInteger):PxP == res: PxP := 0 nn:List NonNegativeInteger := [k for k in 0..n] for k1 in nn for k2 in reverse nn repeat res:= res + binomial(n,k1)*product(monomial(1@R,k1),monomial(1@R,k2))$PxP res
ListOfTerms(p:%):List TERM == res:List TERM := [] while not zero? p repeat m:FM := (variable()$S)**degree p m1:TERM := [m,leadingCoefficient p] res:=concat!(res, m1) p:=reductum p res
Delta(p:%):PxP == zero? p => 0 lt:R := leadingCoefficient p lt * Delta1(degree p) + Delta reductum p
counit(p:%):R == coefficient(p,0)
Compiling FriCAS source code from file /var/zope2/var/LatexWiki/8300278871242681918-25px002.spad using old system compiler. COALG abbreviates category CoAlgebra ------------------------------------------------------------------------ initializing NRLIB COALG for CoAlgebra compiling into NRLIB COALG
;;; *** |CoAlgebra| REDEFINED Time: 0.05 SEC.
finalizing NRLIB COALG Processing CoAlgebra for Browser database: --------(Delta (RR %))--------- --------(counit (R %))--------- --->-->CoAlgebra(constructor): Not documented!!!! --->-->CoAlgebra(): Missing Description ; compiling file "/var/zope2/var/LatexWiki/COALG.NRLIB/COALG.lsp" (written 12 OCT 2009 12:26:10 AM): ; compiling (/VERSIONCHECK 2) ; compiling (DEFPARAMETER |CoAlgebra;CAT| ...) ; compiling (DEFPARAMETER |CoAlgebra;AL| ...) ; compiling (DEFUN |CoAlgebra| ...) ; compiling (DEFUN |CoAlgebra;| ...)
; /var/zope2/var/LatexWiki/COALG.NRLIB/COALG.fasl written ; compilation finished in 0:00:00.029 ------------------------------------------------------------------------ CoAlgebra is now explicitly exposed in frame initial CoAlgebra will be automatically loaded when needed from /var/zope2/var/LatexWiki/COALG.NRLIB/COALG
BIALG abbreviates category BiAlgebra ------------------------------------------------------------------------ initializing NRLIB BIALG for BiAlgebra compiling into NRLIB BIALG
;;; *** |BiAlgebra| REDEFINED Time: 0.03 SEC.
finalizing NRLIB BIALG Processing BiAlgebra for Browser database: --->-->BiAlgebra(): Missing Description ; compiling file "/var/zope2/var/LatexWiki/BIALG.NRLIB/BIALG.lsp" (written 12 OCT 2009 12:26:10 AM): ; compiling (/VERSIONCHECK 2) ; compiling (DEFPARAMETER |BiAlgebra;CAT| ...) ; compiling (DEFPARAMETER |BiAlgebra;AL| ...) ; compiling (DEFUN |BiAlgebra| ...) ; compiling (DEFUN |BiAlgebra;| ...)
; /var/zope2/var/LatexWiki/BIALG.NRLIB/BIALG.fasl written ; compilation finished in 0:00:00.019 ------------------------------------------------------------------------ BiAlgebra is now explicitly exposed in frame initial BiAlgebra will be automatically loaded when needed from /var/zope2/var/LatexWiki/BIALG.NRLIB/BIALG
HOPFALG abbreviates category HopfAlgebra ------------------------------------------------------------------------ initializing NRLIB HOPFALG for HopfAlgebra compiling into NRLIB HOPFALG
;;; *** |HopfAlgebra| REDEFINED Time: 0.04 SEC.
finalizing NRLIB HOPFALG Processing HopfAlgebra for Browser database: --------(S (% %))--------- --->-->HopfAlgebra(constructor): Not documented!!!! --->-->HopfAlgebra(): Missing Description ; compiling file "/var/zope2/var/LatexWiki/HOPFALG.NRLIB/HOPFALG.lsp" (written 12 OCT 2009 12:26:10 AM): ; compiling (/VERSIONCHECK 2) ; compiling (DEFPARAMETER |HopfAlgebra;CAT| ...) ; compiling (DEFPARAMETER |HopfAlgebra;AL| ...) ; compiling (DEFUN |HopfAlgebra| ...) ; compiling (DEFUN |HopfAlgebra;| ...)
; /var/zope2/var/LatexWiki/HOPFALG.NRLIB/HOPFALG.fasl written ; compilation finished in 0:00:00.018 ------------------------------------------------------------------------ HopfAlgebra is now explicitly exposed in frame initial HopfAlgebra will be automatically loaded when needed from /var/zope2/var/LatexWiki/HOPFALG.NRLIB/HOPFALG
PHALG abbreviates domain PolyHopfAlgebra ------------------------------------------------------------------------ initializing NRLIB PHALG for PolyHopfAlgebra compiling into NRLIB PHALG ****** comp fails at level 1 with expression: ****** ((|FreeModuleCat| R (|FreeMonoid| (|Symbol|)))) ****** level 1 ****** $x:= (FreeModuleCat R (FreeMonoid (Symbol))) $m:= $EmptyMode $f:= ((((|x| # #) (R # #) (|PolyHopfAlgebra| #) (R #) ...)))
>> Apparent user error: cannot compile (FreeModuleCat R (FreeMonoid (Symbol)))
P:=PolyHopfAlgebra(Integer,'u)
PolyHopfAlgebra is an unknown constructor and so is unavailable. Did you mean to use -> but type something different instead? p:=monomial(1,1)$P
The function monomial is not implemented in NIL . Delta p
There are 1 exposed and 0 unexposed library operations named Delta having 1 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op Delta to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named Delta with argument type(s) Variable(p)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. Delta(p^2)
There are 1 exposed and 0 unexposed library operations named Delta having 1 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op Delta to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named Delta with argument type(s) Polynomial(Integer)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. Delta(p)^2
There are 1 exposed and 0 unexposed library operations named Delta having 1 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op Delta to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named Delta with argument type(s) Variable(p)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. q:=p+3
(1) |
Delta(q^2)
There are 1 exposed and 0 unexposed library operations named Delta having 1 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op Delta to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named Delta with argument type(s) Polynomial(Integer)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.
Please comment.
Next comes the old problem come with iterated structures. Is it in principle possible to have:
TensorProduct(R:CommutativeRing,LB:List OrderedSet, LM:List FreeModuleCat(R))?
Since the coproduct is coassociative, we might want to define "powers", but I realize that tensor powers are actually feasible.
Actually the basis is not redundant; in the attached example the implementation of the Coalgebra does not use the basis which it pretends to the tensor product. Still exporting a basis would be a nice thing.
More questions: