Changed derivative of abs(x) to
Added conjugate(x).
spad
)abbrev package FSPECX FunctionalSpecialFunction
)boot $tryRecompileArguments := nil
++ Provides the special functions
++ Author: Manuel Bronstein
++ Date Created: 18 Apr 1989
++ Date Last Updated: 4 October 1993
++ Description: Provides some special functions over an integral domain.
++ Keywords: special, function.
FunctionalSpecialFunction(R, F) : Exports == Implementation where
R : Join(Comparable, IntegralDomain)
F : FunctionSpace R
OP ==> BasicOperator
K ==> Kernel F
SE ==> Symbol
SPECIALDIFF ==> '%specialDiff
Exports ==> with
belong? : OP -> Boolean
++ belong?(op) is true if op is a special function operator;
operator : OP -> OP
++ operator(op) returns a copy of op with the domain-dependent
++ properties appropriate for F;
++ error if op is not a special function operator
abs : F -> F
++ abs(f) returns the absolute value operator applied to f
conjugate: F -> F
++ conjugate(f) returns the conjugate value operator applied to f
Gamma : F -> F
++ Gamma(f) returns the formal Gamma function applied to f
Gamma : (F, F) -> F
++ Gamma(a, x) returns the incomplete Gamma function applied to a and x
Beta : (F, F) -> F
++ Beta(x, y) returns the beta function applied to x and y
digamma : F->F
++ digamma(x) returns the digamma function applied to x
polygamma : (F, F) ->F
++ polygamma(x, y) returns the polygamma function applied to x and y
besselJ : (F, F) -> F
++ besselJ(x, y) returns the besselj function applied to x and y
besselY : (F, F) -> F
++ besselY(x, y) returns the bessely function applied to x and y
besselI : (F, F) -> F
++ besselI(x, y) returns the besseli function applied to x and y
besselK : (F, F) -> F
++ besselK(x, y) returns the besselk function applied to x and y
airyAi : F -> F
++ airyAi(x) returns the Airy Ai function applied to x
airyAiPrime : F -> F
++ airyAiPrime(x) returns the derivative of Airy Ai function applied to x
airyBi : F -> F
++ airyBi(x) returns the Airy Bi function applied to x
airyBiPrime : F -> F
++ airyBiPrime(x) returns the derivative of Airy Bi function applied to x
lambertW : F -> F
++ lambertW(x) is the Lambert W function at x
polylog : (F, F) -> F
++ polylog(s, x) is the polylogarithm of order s at x
weierstrassP : (F, F, F) -> F
++ weierstrassP(g2, g3, x)
weierstrassPPrime : (F, F, F) -> F
++ weierstrassPPrime(g2, g3, x)
weierstrassSigma : (F, F, F) -> F
++ weierstrassSigma(g2, g3, x)
weierstrassZeta : (F, F, F) -> F
++ weierstrassZeta(g2, g3, x)
-- weierstrassPInverse : (F, F, F) -> F
-- ++ weierstrassPInverse(g2, g3, z) is the inverse of Weierstrass
-- ++ P function, defined by the formula
-- ++ \spad{weierstrassP(g2, g3, weierstrassPInverse(g2, g3, z)) = z}
whittakerM : (F, F, F) -> F
++ whittakerM(k, m, z) is the Whittaker M function
whittakerW : (F, F, F) -> F
++ whittakerW(k, m, z) is the Whittaker W function
angerJ : (F, F) -> F
++ angerJ(v, z) is the Anger J function
weberE : (F, F) -> F
++ weberE(v, z) is the Weber E function
struveH : (F, F) -> F
++ struveH(v, z) is the Struve H function
struveL : (F, F) -> F
++ struveL(v, z) is the Struve L function defined by the formula
++ \spad{struveL(v, z) = -%i^exp(-v*%pi*%i/2)*struveH(v, %i*z)}
hankelH1 : (F, F) -> F
++ hankelH1(v, z) is first Hankel function (Bessel function of
++ the third kind)
hankelH2 : (F, F) -> F
++ hankelH2(v, z) is the second Hankel function (Bessel function of
++ the third kind)
lommelS1 : (F, F, F) -> F
++ lommelS1(mu, nu, z) is the Lommel s function
lommelS2 : (F, F, F) -> F
++ lommelS2(mu, nu, z) is the Lommel S function
kummerM : (F, F, F) -> F
++ kummerM(a, b, z) is the Kummer M function
kummerU : (F, F, F) -> F
++ kummerU(a, b, z) is the Kummer U function
legendreP : (F, F, F) -> F
++ legendreP(nu, mu, z) is the Legendre P function
legendreQ : (F, F, F) -> F
++ legendreQ(nu, mu, z) is the Legendre Q function
kelvinBei : (F, F) -> F
++ kelvinBei(v, z) is the Kelvin bei function defined by equality
++ \spad{kelvinBei(v, z) = imag(besselJ(v, exp(3*%pi*%i/4)*z))}
++ for z and v real
kelvinBer : (F, F) -> F
++ kelvinBer(v, z) is the Kelvin ber function defined by equality
++ \spad{kelvinBer(v, z) = real(besselJ(v, exp(3*%pi*%i/4)*z))}
++ for z and v real
kelvinKei : (F, F) -> F
++ kelvinKei(v, z) is the Kelvin kei function defined by equality
++ \spad{kelvinKei(v, z) =
++ imag(exp(-v*%pi*%i/2)*besselK(v, exp(%pi*%i/4)*z))}
++ for z and v real
kelvinKer : (F, F) -> F
++ kelvinKer(v, z) is the Kelvin kei function defined by equality
++ \spad{kelvinKer(v, z) =
++ real(exp(-v*%pi*%i/2)*besselK(v, exp(%pi*%i/4)*z))}
++ for z and v real
ellipticK : F -> F
++ ellipticK(m) is the complete elliptic integral of the
++ first kind: \spad{ellipticK(m) =
++ integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..1)}
ellipticE : F -> F
++ ellipticE(m) is the complete elliptic integral of the
++ second kind: \spad{ellipticE(m) =
++ integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..1)}
ellipticE : (F, F) -> F
++ ellipticE(z, m) is the incomplete elliptic integral of the
++ second kind: \spad{ellipticE(z, m) =
++ integrate(sqrt(1-m*t^2)/sqrt(1-t^2), t = 0..z)}
ellipticF : (F, F) -> F
++ ellipticF(z, m) is the incomplete elliptic integral of the
++ first kind : \spad{ellipticF(z, m) =
++ integrate(1/sqrt((1-t^2)*(1-m*t^2)), t = 0..z)}
ellipticPi : (F, F, F) -> F
++ ellipticPi(z, n, m) is the incomplete elliptic integral of
++ the third kind: \spad{ellipticPi(z, n, m) =
++ integrate(1/((1-n*t^2)*sqrt((1-t^2)*(1-m*t^2))), t = 0..z)}
jacobiSn : (F, F) -> F
++ jacobiSn(z, m) is the Jacobi elliptic sn function, defined
++ by the formula \spad{jacobiSn(ellipticF(z, m), m) = z}
jacobiCn : (F, F) -> F
++ jacobiCn(z, m) is the Jacobi elliptic cn function, defined
++ by \spad{jacobiCn(z, m)^2 + jacobiSn(z, m)^2 = 1} and
++ \spad{jacobiCn(0, m) = 1}
jacobiDn : (F, F) -> F
++ jacobiDn(z, m) is the Jacobi elliptic dn function, defined
++ by \spad{jacobiDn(z, m)^2 + m*jacobiSn(z, m)^2 = 1} and
++ \spad{jacobiDn(0, m) = 1}
jacobiZeta : (F, F) -> F
++ jacobiZeta(z, m) is the Jacobi elliptic zeta function, defined
++ by \spad{D(jacobiZeta(z, m), z) =
++ jacobiDn(z, m)^2 - ellipticE(m)/ellipticK(m)} and
++ \spad{jacobiZeta(0, m) = 0}.
jacobiTheta : (F, F) -> F
++ jacobiTheta(q, z) is the third Jacobi Theta function
lerchPhi : (F, F, F) -> F
++ lerchPhi(z, s, a) is the Lerch Phi function
riemannZeta : F -> F
++ riemannZeta(z) is the Riemann Zeta function
charlierC : (F, F, F) -> F
++ charlierC(n, a, z) is the Charlier polynomial
hermiteH : (F, F) -> F
++ hermiteH(n, z) is the Hermite polynomial
jacobiP : (F, F, F, F) -> F
++ jacobiP(n, a, b, z) is the Jacobi polynomial
laguerreL: (F, F, F) -> F
++ laguerreL(n, a, z) is the Laguerre polynomial
meixnerM : (F, F, F, F) -> F
++ meixnerM(n, b, c, z) is the Meixner polynomial
if F has RetractableTo(Integer) then
hypergeometricF : (List F, List F, F) -> F
++ hypergeometricF(la, lb, z) is the generalized hypergeometric
++ function
meijerG : (List F, List F, List F, List F, F) -> F
++ meijerG(la, lb, lc, ld, z) is the meijerG function
-- Functions below should be local but conditional
iiGamma : F -> F
++ iiGamma(x) should be local but conditional;
iiabs : F -> F
++ iiabs(x) should be local but conditional;
iiconjugate: F -> F
++ iiconjugate(x) should be local but conditional;
iiBeta : List F -> F
++ iiBeta(x) should be local but conditional;
iidigamma : F -> F
++ iidigamma(x) should be local but conditional;
iipolygamma : List F -> F
++ iipolygamma(x) should be local but conditional;
iiBesselJ : List F -> F
++ iiBesselJ(x) should be local but conditional;
iiBesselY : List F -> F
++ iiBesselY(x) should be local but conditional;
iiBesselI : List F -> F
++ iiBesselI(x) should be local but conditional;
iiBesselK : List F -> F
++ iiBesselK(x) should be local but conditional;
iiAiryAi : F -> F
++ iiAiryAi(x) should be local but conditional;
iiAiryAiPrime : F -> F
++ iiAiryAiPrime(x) should be local but conditional;
iiAiryBi : F -> F
++ iiAiryBi(x) should be local but conditional;
iiAiryBiPrime : F -> F
++ iiAiryBiPrime(x) should be local but conditional;
iAiryAi : F -> F
++ iAiryAi(x) should be local but conditional;
iAiryAiPrime : F -> F
++ iAiryAiPrime(x) should be local but conditional;
iAiryBi : F -> F
++ iAiryBi(x) should be local but conditional;
iAiryBiPrime : F -> F
++ iAiryBiPrime(x) should be local but conditional;
iiHypergeometricF : List F -> F
++ iiHypergeometricF(l) should be local but conditional;
iiPolylog : (F, F) -> F
++ iiPolylog(x, s) should be local but conditional;
iLambertW : F -> F
++ iLambertW(x) should be local but conditional;
Implementation ==> add
SPECIAL := 'special
INP ==> InputForm
SPECIALINPUT ==> '%specialInput
iabs : F -> F
iconjugate: F -> F
iGamma : F -> F
iBeta : (F, F) -> F
idigamma : F -> F
iiipolygamma : (F, F) -> F
iiiBesselJ : (F, F) -> F
iiiBesselY : (F, F) -> F
iiiBesselI : (F, F) -> F
iiiBesselK : (F, F) -> F
iPolylog : List F -> F
iWeierstrassP : (F, F, F) -> F
iWeierstrassPPrime : (F, F, F) -> F
iWeierstrassSigma : (F, F, F) -> F
iWeierstrassZeta : (F, F, F) -> F
iiWeierstrassP : List F -> F
iiWeierstrassPPrime : List F -> F
iiWeierstrassSigma : List F -> F
iiWeierstrassZeta : List F -> F
iiMeijerG : List F -> F
opabs := operator('abs)$CommonOperators
opconjugate := operator('conjugate)$CommonOperators
opGamma := operator('Gamma)$CommonOperators
opGamma2 := operator('Gamma2)$CommonOperators
opBeta := operator('Beta)$CommonOperators
opdigamma := operator('digamma)$CommonOperators
oppolygamma := operator('polygamma)$CommonOperators
opBesselJ := operator('besselJ)$CommonOperators
opBesselY := operator('besselY)$CommonOperators
opBesselI := operator('besselI)$CommonOperators
opBesselK := operator('besselK)$CommonOperators
opAiryAi := operator('airyAi)$CommonOperators
opAiryAiPrime := operator('airyAiPrime)$CommonOperators
opAiryBi := operator('airyBi)$CommonOperators
opAiryBiPrime := operator('airyBiPrime)$CommonOperators
opLambertW := operator('lambertW)$CommonOperators
opPolylog := operator('polylog)$CommonOperators
opWeierstrassP := operator('weierstrassP)$CommonOperators
opWeierstrassPPrime := operator('weierstrassPPrime)$CommonOperators
opWeierstrassSigma := operator('weierstrassSigma)$CommonOperators
opWeierstrassZeta := operator('weierstrassZeta)$CommonOperators
opHypergeometricF := operator('hypergeometricF)$CommonOperators
opMeijerG := operator('meijerG)$CommonOperators
opCharlierC := operator('charlierC)$CommonOperators
opHermiteH := operator('hermiteH)$CommonOperators
opJacobiP := operator('jacobiP)$CommonOperators
opLaguerreL := operator('laguerreL)$CommonOperators
opMeixnerM := operator('meixnerM)$CommonOperators
op_log_gamma := operator('%logGamma)$CommonOperators
op_eis := operator('%eis)$CommonOperators
op_erfs := operator('%erfs)$CommonOperators
op_erfis := operator('%erfis)$CommonOperators
abs x == opabs x
conjugate x == opconjugate x
Gamma(x) == opGamma(x)
Gamma(a, x) == opGamma2(a, x)
Beta(x, y) == opBeta(x, y)
digamma x == opdigamma(x)
polygamma(k, x)== oppolygamma(k, x)
besselJ(a, x) == opBesselJ(a, x)
besselY(a, x) == opBesselY(a, x)
besselI(a, x) == opBesselI(a, x)
besselK(a, x) == opBesselK(a, x)
airyAi(x) == opAiryAi(x)
airyAiPrime(x) == opAiryAiPrime(x)
airyBi(x) == opAiryBi(x)
airyBiPrime(x) == opAiryBiPrime(x)
lambertW(x) == opLambertW(x)
polylog(s, x) == opPolylog(s, x)
weierstrassP(g2, g3, x) == opWeierstrassP(g2, g3, x)
weierstrassPPrime(g2, g3, x) == opWeierstrassPPrime(g2, g3, x)
weierstrassSigma(g2, g3, x) == opWeierstrassSigma(g2, g3, x)
weierstrassZeta(g2, g3, x) == opWeierstrassZeta(g2, g3, x)
if F has RetractableTo(Integer) then
hypergeometricF(a, b, z) ==
nai := #a
nbi := #b
z = 0 and nai <= nbi + 1 => 1
p := (#a)::F
q := (#b)::F
opHypergeometricF concat(concat(a, concat(b, [z])), [p, q])
meijerG(a, b, c, d, z) ==
n1 := (#a)::F
n2 := (#b)::F
m1 := (#c)::F
m2 := (#d)::F
opMeijerG concat(concat(a, concat(b,
concat(c, concat(d, [z])))), [n1, n2, m1, m2])
import from List Kernel(F)
opdiff := operator(operator('%diff)$CommonOperators)$F
dummy ==> new()$SE :: F
ahalf : F := recip(2::F)::F
athird : F := recip(3::F)::F
afourth : F := recip(4::F)::F
asixth : F := recip(6::F)::F
twothirds : F := 2*athird
threehalfs : F := 3*ahalf
-- Helpers for partially defined derivatives
grad2(l : List F, t : SE, op : OP, d2 : (F, F) -> F ) : F ==
x1 := l(1)
x2 := l(2)
dm := dummy
differentiate(x1, t)*kernel(opdiff, [op [dm, x2], dm, x1])
+ differentiate(x2, t)*d2(x1, x2)
grad3(l : List F, t : SE, op : OP, d3 : (F, F, F) -> F ) : F ==
x1 := l(1)
x2 := l(2)
x3 := l(3)
dm1 := dummy
dm2 := dummy
differentiate(x1, t)*kernel(opdiff, [op [dm1, x2, x3], dm1, x1])
+ differentiate(x2, t)*kernel(opdiff, [op [x1, dm2, x3], dm2, x2])
+ differentiate(x3, t)*d3(x1, x2, x3)
grad4(l : List F, t : SE, op : OP, d4 : (F, F, F, F) -> F ) : F ==
x1 := l(1)
x2 := l(2)
x3 := l(3)
x4 := l(4)
dm1 := dummy
dm2 := dummy
dm3 := dummy
kd1 := kernel(opdiff, [op [dm1, x2, x3, x4], dm1, x1])
kd2 := kernel(opdiff, [op [x1, dm2, x3, x4], dm2, x2])
kd3 := kernel(opdiff, [op [x1, x2, dm3, x4], dm3, x3])
differentiate(x1, t)*kd1 + differentiate(x2, t)*kd2 +
differentiate(x3, t)*kd3 +
differentiate(x4, t)*d4(x1, x2, x3, x4)
-- handle WeierstrassPInverse
)if false
opWeierstrassPInverse := operator('weierstrassPInverse)$CommonOperators
weierstrassPInverse(g2, g3, z) == opWeierstrassPInverse(g2, g3, z)
eWeierstrassPInverse(g2 : F, g3 : F, z : F) : F ==
kernel(opWeierstrassPInverse, [g2, g3, z])
elWeierstrassPInverse(l : List F) : F == eWeierstrassPInverse(l(1), l(2), l(3))
evaluate(opWeierstrassPInverse, elWeierstrassPInverse)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eWeierstrassPInverseGrad_g2(l : List F) : F ==
g2 := l(1)
g3 := l(2)
z := l(3)
error "unimplemented"
eWeierstrassPInverseGrad_g3(l : List F) : F ==
g2 := l(1)
g3 := l(2)
z := l(3)
error "unimplemented"
eWeierstrassPInverseGrad_z(l : List F) : F ==
g2 := l(1)
g3 := l(2)
z := l(3)
1/sqrt(4*z^3 - g2*z - g3)
derivative(opWeierstrassPInverse, [eWeierstrassPInverseGrad_g2,
eWeierstrassPInverseGrad_g3, eWeierstrassPInverseGrad_z])
)endif
-- handle WhittakerM
opWhittakerM := operator('whittakerM)$CommonOperators
whittakerM(k, m, z) == opWhittakerM(k, m, z)
eWhittakerM(k : F, m : F, z : F) : F ==
kernel(opWhittakerM, [k, m, z])
elWhittakerM(l : List F) : F == eWhittakerM(l(1), l(2), l(3))
evaluate(opWhittakerM, elWhittakerM)$BasicOperatorFunctions1(F)
eWhittakerMGrad_z(k : F, m : F, z : F) : F ==
(ahalf - k/z)*whittakerM(k, m, z) +
(ahalf + k + m)*whittakerM(k + 1, m, z)/z
dWhittakerM(l : List F, t : SE) : F ==
grad3(l, t, opWhittakerM, eWhittakerMGrad_z)
setProperty(opWhittakerM, SPECIALDIFF, dWhittakerM@((List F, SE)->F)
pretend None)
-- handle WhittakerW
opWhittakerW := operator('whittakerW)$CommonOperators
whittakerW(k, m, z) == opWhittakerW(k, m, z)
eWhittakerW(k : F, m : F, z : F) : F ==
kernel(opWhittakerW, [k, m, z])
elWhittakerW(l : List F) : F == eWhittakerW(l(1), l(2), l(3))
evaluate(opWhittakerW, elWhittakerW)$BasicOperatorFunctions1(F)
eWhittakerWGrad_z(k : F, m : F, z : F) : F ==
(ahalf - k/z)*whittakerW(k, m, z) - whittakerW(k + 1, m, z)/z
dWhittakerW(l : List F, t : SE) : F ==
grad3(l, t, opWhittakerW, eWhittakerWGrad_z)
setProperty(opWhittakerW, SPECIALDIFF, dWhittakerW@((List F, SE)->F)
pretend None)
-- handle AngerJ
opAngerJ := operator('angerJ)$CommonOperators
angerJ(v, z) == opAngerJ(v, z)
if F has TranscendentalFunctionCategory then
eAngerJ(v : F, z : F) : F ==
z = 0 => sin(v*pi())/(v*pi())
kernel(opAngerJ, [v, z])
elAngerJ(l : List F) : F == eAngerJ(l(1), l(2))
evaluate(opAngerJ, elAngerJ)$BasicOperatorFunctions1(F)
eAngerJGrad_z(v : F, z : F) : F ==
-angerJ(v + 1, z) + v*angerJ(v, z)/z - sin(v*pi())/(pi()*z)
dAngerJ(l : List F, t : SE) : F ==
grad2(l, t, opAngerJ, eAngerJGrad_z)
setProperty(opAngerJ, SPECIALDIFF, dAngerJ@((List F, SE)->F)
pretend None)
else
eeAngerJ(l : List F) : F == kernel(opAngerJ, l)
evaluate(opAngerJ, eeAngerJ)$BasicOperatorFunctions1(F)
-- handle WeberE
opWeberE := operator('weberE)$CommonOperators
weberE(v, z) == opWeberE(v, z)
if F has TranscendentalFunctionCategory then
eWeberE(v : F, z : F) : F ==
z = 0 => 2*sin(ahalf*v*pi())^2/(v*pi())
kernel(opWeberE, [v, z])
elWeberE(l : List F) : F == eWeberE(l(1), l(2))
evaluate(opWeberE, elWeberE)$BasicOperatorFunctions1(F)
eWeberEGrad_z(v : F, z : F) : F ==
-weberE(v + 1, z) + v*weberE(v, z)/z - (1 - cos(v*pi()))/(pi()*z)
dWeberE(l : List F, t : SE) : F ==
grad2(l, t, opWeberE, eWeberEGrad_z)
setProperty(opWeberE, SPECIALDIFF, dWeberE@((List F, SE)->F)
pretend None)
else
eeWeberE(l : List F) : F == kernel(opWeberE, l)
evaluate(opWeberE, eeWeberE)$BasicOperatorFunctions1(F)
-- handle StruveH
opStruveH := operator('struveH)$CommonOperators
struveH(v, z) == opStruveH(v, z)
eStruveH(v : F, z : F) : F ==
kernel(opStruveH, [v, z])
elStruveH(l : List F) : F == eStruveH(l(1), l(2))
evaluate(opStruveH, elStruveH)$BasicOperatorFunctions1(F)
if F has TranscendentalFunctionCategory
and F has RadicalCategory then
eStruveHGrad_z(v : F, z : F) : F ==
-struveH(v + 1, z) + v*struveH(v, z)/z +
(ahalf*z)^v/(sqrt(pi())*Gamma(v + threehalfs))
dStruveH(l : List F, t : SE) : F ==
grad2(l, t, opStruveH, eStruveHGrad_z)
setProperty(opStruveH, SPECIALDIFF, dStruveH@((List F, SE)->F)
pretend None)
-- handle StruveL
opStruveL := operator('struveL)$CommonOperators
struveL(v, z) == opStruveL(v, z)
eStruveL(v : F, z : F) : F ==
kernel(opStruveL, [v, z])
elStruveL(l : List F) : F == eStruveL(l(1), l(2))
evaluate(opStruveL, elStruveL)$BasicOperatorFunctions1(F)
if F has TranscendentalFunctionCategory
and F has RadicalCategory then
eStruveLGrad_z(v : F, z : F) : F ==
struveL(v + 1, z) + v*struveL(v, z)/z +
(ahalf*z)^v/(sqrt(pi())*Gamma(v + threehalfs))
dStruveL(l : List F, t : SE) : F ==
grad2(l, t, opStruveL, eStruveLGrad_z)
setProperty(opStruveL, SPECIALDIFF, dStruveL@((List F, SE)->F)
pretend None)
-- handle HankelH1
opHankelH1 := operator('hankelH1)$CommonOperators
hankelH1(v, z) == opHankelH1(v, z)
eHankelH1(v : F, z : F) : F ==
kernel(opHankelH1, [v, z])
elHankelH1(l : List F) : F == eHankelH1(l(1), l(2))
evaluate(opHankelH1, elHankelH1)$BasicOperatorFunctions1(F)
eHankelH1Grad_z(v : F, z : F) : F ==
-hankelH1(v + 1, z) + v*hankelH1(v, z)/z
dHankelH1(l : List F, t : SE) : F ==
grad2(l, t, opHankelH1, eHankelH1Grad_z)
setProperty(opHankelH1, SPECIALDIFF, dHankelH1@((List F, SE)->F)
pretend None)
-- handle HankelH2
opHankelH2 := operator('hankelH2)$CommonOperators
hankelH2(v, z) == opHankelH2(v, z)
eHankelH2(v : F, z : F) : F ==
kernel(opHankelH2, [v, z])
elHankelH2(l : List F) : F == eHankelH2(l(1), l(2))
evaluate(opHankelH2, elHankelH2)$BasicOperatorFunctions1(F)
eHankelH2Grad_z(v : F, z : F) : F ==
-hankelH2(v + 1, z) + v*hankelH2(v, z)/z
dHankelH2(l : List F, t : SE) : F ==
grad2(l, t, opHankelH2, eHankelH2Grad_z)
setProperty(opHankelH2, SPECIALDIFF, dHankelH2@((List F, SE)->F)
pretend None)
-- handle LommelS1
opLommelS1 := operator('lommelS1)$CommonOperators
lommelS1(m, v, z) == opLommelS1(m, v, z)
eLommelS1(m : F, v : F, z : F) : F ==
kernel(opLommelS1, [m, v, z])
elLommelS1(l : List F) : F == eLommelS1(l(1), l(2), l(3))
evaluate(opLommelS1, elLommelS1)$BasicOperatorFunctions1(F)
eLommelS1Grad_z(m : F, v : F, z : F) : F ==
-v*lommelS1(m, v, z)/z + (m + v - 1)*lommelS1(m - 1, v - 1, z)
dLommelS1(l : List F, t : SE) : F ==
grad3(l, t, opLommelS1, eLommelS1Grad_z)
setProperty(opLommelS1, SPECIALDIFF, dLommelS1@((List F, SE)->F)
pretend None)
-- handle LommelS2
opLommelS2 := operator('lommelS2)$CommonOperators
lommelS2(mu, nu, z) == opLommelS2(mu, nu, z)
eLommelS2(mu : F, nu : F, z : F) : F ==
kernel(opLommelS2, [mu, nu, z])
elLommelS2(l : List F) : F == eLommelS2(l(1), l(2), l(3))
evaluate(opLommelS2, elLommelS2)$BasicOperatorFunctions1(F)
eLommelS2Grad_z(m : F, v : F, z : F) : F ==
-v*lommelS2(m, v, z)/z + (m + v - 1)*lommelS2(m - 1, v - 1, z)
dLommelS2(l : List F, t : SE) : F ==
grad3(l, t, opLommelS2, eLommelS2Grad_z)
setProperty(opLommelS2, SPECIALDIFF, dLommelS2@((List F, SE)->F)
pretend None)
-- handle KummerM
opKummerM := operator('kummerM)$CommonOperators
kummerM(mu, nu, z) == opKummerM(mu, nu, z)
eKummerM(a : F, b : F, z : F) : F ==
z = 0 => 1
kernel(opKummerM, [a, b, z])
elKummerM(l : List F) : F == eKummerM(l(1), l(2), l(3))
evaluate(opKummerM, elKummerM)$BasicOperatorFunctions1(F)
eKummerMGrad_z(a : F, b : F, z : F) : F ==
((z + a - b)*kummerM(a, b, z)+(b - a)*kummerM(a - 1, b, z))/z
dKummerM(l : List F, t : SE) : F ==
grad3(l, t, opKummerM, eKummerMGrad_z)
setProperty(opKummerM, SPECIALDIFF, dKummerM@((List F, SE)->F)
pretend None)
-- handle KummerU
opKummerU := operator('kummerU)$CommonOperators
kummerU(a, b, z) == opKummerU(a, b, z)
eKummerU(a : F, b : F, z : F) : F ==
kernel(opKummerU, [a, b, z])
elKummerU(l : List F) : F == eKummerU(l(1), l(2), l(3))
evaluate(opKummerU, elKummerU)$BasicOperatorFunctions1(F)
eKummerUGrad_z(a : F, b : F, z : F) : F ==
((z + a - b)*kummerU(a, b, z) - kummerU(a - 1, b, z))/z
dKummerU(l : List F, t : SE) : F ==
grad3(l, t, opKummerU, eKummerUGrad_z)
setProperty(opKummerU, SPECIALDIFF, dKummerU@((List F, SE)->F)
pretend None)
-- handle LegendreP
opLegendreP := operator('legendreP)$CommonOperators
legendreP(nu, mu, z) == opLegendreP(nu, mu, z)
eLegendreP(nu : F, mu : F, z : F) : F ==
kernel(opLegendreP, [nu, mu, z])
elLegendreP(l : List F) : F == eLegendreP(l(1), l(2), l(3))
evaluate(opLegendreP, elLegendreP)$BasicOperatorFunctions1(F)
eLegendrePGrad_z(nu : F, mu : F, z : F) : F ==
(nu - mu + 1)*legendreP(nu + 1, mu, z) -
(nu + 1)*z*legendreP(nu, mu, z)
dLegendreP(l : List F, t : SE) : F ==
grad3(l, t, opLegendreP, eLegendrePGrad_z)
setProperty(opLegendreP, SPECIALDIFF, dLegendreP@((List F, SE)->F)
pretend None)
-- handle LegendreQ
opLegendreQ := operator('legendreQ)$CommonOperators
legendreQ(nu, mu, z) == opLegendreQ(nu, mu, z)
eLegendreQ(nu : F, mu : F, z : F) : F ==
kernel(opLegendreQ, [nu, mu, z])
elLegendreQ(l : List F) : F == eLegendreQ(l(1), l(2), l(3))
evaluate(opLegendreQ, elLegendreQ)$BasicOperatorFunctions1(F)
eLegendreQGrad_z(nu : F, mu : F, z : F) : F ==
(nu - mu + 1)*legendreQ(nu + 1, mu, z) -
(nu + 1)*z*legendreQ(nu, mu, z)
dLegendreQ(l : List F, t : SE) : F ==
grad3(l, t, opLegendreQ, eLegendreQGrad_z)
setProperty(opLegendreQ, SPECIALDIFF, dLegendreQ@((List F, SE)->F)
pretend None)
-- handle KelvinBei
opKelvinBei := operator('kelvinBei)$CommonOperators
kelvinBei(v, z) == opKelvinBei(v, z)
eKelvinBei(v : F, z : F) : F ==
kernel(opKelvinBei, [v, z])
elKelvinBei(l : List F) : F == eKelvinBei(l(1), l(2))
evaluate(opKelvinBei, elKelvinBei)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eKelvinBeiGrad_z(v : F, z : F) : F ==
ahalf*sqrt(2::F)*(kelvinBei(v + 1, z) - kelvinBer(v + 1, z)) +
v*kelvinBei(v, z)/z
dKelvinBei(l : List F, t : SE) : F ==
grad2(l, t, opKelvinBei, eKelvinBeiGrad_z)
setProperty(opKelvinBei, SPECIALDIFF, dKelvinBei@((List F, SE)->F)
pretend None)
-- handle KelvinBer
opKelvinBer := operator('kelvinBer)$CommonOperators
kelvinBer(v, z) == opKelvinBer(v, z)
eKelvinBer(v : F, z : F) : F ==
kernel(opKelvinBer, [v, z])
elKelvinBer(l : List F) : F == eKelvinBer(l(1), l(2))
evaluate(opKelvinBer, elKelvinBer)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eKelvinBerGrad_z(v : F, z : F) : F ==
ahalf*sqrt(2::F)*(kelvinBer(v + 1, z) + kelvinBei(v + 1, z)) +
v*kelvinBer(v, z)/z
dKelvinBer(l : List F, t : SE) : F ==
grad2(l, t, opKelvinBer, eKelvinBerGrad_z)
setProperty(opKelvinBer, SPECIALDIFF, dKelvinBer@((List F, SE)->F)
pretend None)
-- handle KelvinKei
opKelvinKei := operator('kelvinKei)$CommonOperators
kelvinKei(v, z) == opKelvinKei(v, z)
eKelvinKei(v : F, z : F) : F ==
kernel(opKelvinKei, [v, z])
elKelvinKei(l : List F) : F == eKelvinKei(l(1), l(2))
evaluate(opKelvinKei, elKelvinKei)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eKelvinKeiGrad_z(v : F, z : F) : F ==
ahalf*sqrt(2::F)*(kelvinKei(v + 1, z) - kelvinKer(v + 1, z)) +
v*kelvinKei(v, z)/z
dKelvinKei(l : List F, t : SE) : F ==
grad2(l, t, opKelvinKei, eKelvinKeiGrad_z)
setProperty(opKelvinKei, SPECIALDIFF, dKelvinKei@((List F, SE)->F)
pretend None)
-- handle KelvinKer
opKelvinKer := operator('kelvinKer)$CommonOperators
kelvinKer(v, z) == opKelvinKer(v, z)
eKelvinKer(v : F, z : F) : F ==
kernel(opKelvinKer, [v, z])
elKelvinKer(l : List F) : F == eKelvinKer(l(1), l(2))
evaluate(opKelvinKer, elKelvinKer)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eKelvinKerGrad_z(v : F, z : F) : F ==
ahalf*sqrt(2::F)*(kelvinKer(v + 1, z) + kelvinKei(v + 1, z)) +
v*kelvinKer(v, z)/z
dKelvinKer(l : List F, t : SE) : F ==
grad2(l, t, opKelvinKer, eKelvinKerGrad_z)
setProperty(opKelvinKer, SPECIALDIFF, dKelvinKer@((List F, SE)->F)
pretend None)
-- handle EllipticK
opEllipticK := operator('ellipticK)$CommonOperators
ellipticK(m) == opEllipticK(m)
eEllipticK(m : F) : F ==
kernel(opEllipticK, [m])
elEllipticK(l : List F) : F == eEllipticK(l(1))
evaluate(opEllipticK, elEllipticK)$BasicOperatorFunctions1(F)
dEllipticK(m : F) : F ==
ahalf*(ellipticE(m) - (1 - m)*ellipticK(m))/(m*(1 - m))
derivative(opEllipticK, dEllipticK)
-- handle one argument EllipticE
opEllipticE := operator('ellipticE)$CommonOperators
ellipticE(m) == opEllipticE(m)
eEllipticE(m : F) : F ==
kernel(opEllipticE, [m])
elEllipticE(l : List F) : F == eEllipticE(l(1))
evaluate(opEllipticE, elEllipticE)$BasicOperatorFunctions1(F)
dEllipticE(m : F) : F ==
ahalf*(ellipticE(m) - ellipticK(m))/m
derivative(opEllipticE, dEllipticE)
-- handle two argument EllipticE
opEllipticE2 := operator('ellipticE2)$CommonOperators
ellipticE(z, m) == opEllipticE2(z, m)
eEllipticE2(z : F, m : F) : F ==
z = 0 => 0
z = 1 => eEllipticE(m)
kernel(opEllipticE2, [z, m])
elEllipticE2(l : List F) : F == eEllipticE2(l(1), l(2))
evaluate(opEllipticE2, elEllipticE2)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eEllipticE2Grad_z(l : List F) : F ==
z := l(1)
m := l(2)
sqrt(1 - m*z^2)/sqrt(1 - z^2)
eEllipticE2Grad_m(l : List F) : F ==
z := l(1)
m := l(2)
ahalf*(ellipticE(z, m) - ellipticF(z, m))/m
derivative(opEllipticE2, [eEllipticE2Grad_z, eEllipticE2Grad_m])
inEllipticE2(li : List INP) : INP ==
convert cons(convert('ellipticE), li)
input(opEllipticE2, inEllipticE2@((List INP) -> INP))
-- handle EllipticF
opEllipticF := operator('ellipticF)$CommonOperators
ellipticF(z, m) == opEllipticF(z, m)
eEllipticF(z : F, m : F) : F ==
z = 0 => 0
z = 1 => ellipticK(m)
kernel(opEllipticF, [z, m])
elEllipticF(l : List F) : F == eEllipticF(l(1), l(2))
evaluate(opEllipticF, elEllipticF)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eEllipticFGrad_z(l : List F) : F ==
z := l(1)
m := l(2)
1/(sqrt(1 - m*z^2)*sqrt(1 - z^2))
eEllipticFGrad_m(l : List F) : F ==
z := l(1)
m := l(2)
ahalf*((ellipticE(z, m) - (1 - m)*ellipticF(z, m))/m -
z*sqrt(1 - z^2)/sqrt(1 - m*z^2))/(1 - m)
derivative(opEllipticF, [eEllipticFGrad_z, eEllipticFGrad_m])
-- handle EllipticPi
opEllipticPi := operator('ellipticPi)$CommonOperators
ellipticPi(z, n, m) == opEllipticPi(z, n, m)
eEllipticPi(z : F, n : F, m : F) : F ==
z = 0 => 0
kernel(opEllipticPi, [z, n, m])
elEllipticPi(l : List F) : F == eEllipticPi(l(1), l(2), l(3))
evaluate(opEllipticPi, elEllipticPi)$BasicOperatorFunctions1(F)
if F has RadicalCategory then
eEllipticPiGrad_z(l : List F) : F ==
z := l(1)
n := l(2)
m := l(3)
1/((1 - n*z^2)*sqrt(1 - m*z^2)*sqrt(1 - z^2))
eEllipticPiGrad_n(l : List F) : F ==
z := l(1)
n := l(2)
m := l(3)
t1 := -(n^2 - m)*ellipticPi(z, n, m)/((n - 1)*(n - m)*n)
t2 := ellipticF(z, m)/((n - 1)*n)
t3 := -ellipticE(z, m)/((n - 1)*(n - m))
t4 := n*z*sqrt(1 - m*z^2)*sqrt(1 - z^2)/
((1 - n*z^2)*(n - 1)*(n - m))
ahalf*(t1 + t2 + t3 + t4)
eEllipticPiGrad_m(l : List F) : F ==
z := l(1)
n := l(2)
m := l(3)
t1 := m*z*sqrt(1 - z^2)/sqrt(1 - m*z^2)
t2 := (-ellipticE(z, m) + t1)/(1 - m)
ahalf*(ellipticPi(z, n, m) + t2)/(n - m)
derivative(opEllipticPi, [eEllipticPiGrad_z, eEllipticPiGrad_n,
eEllipticPiGrad_m])
-- handle JacobiSn
opJacobiSn := operator('jacobiSn)$CommonOperators
jacobiSn(z, m) == opJacobiSn(z, m)
eJacobiSn(z : F, m : F) : F ==
z = 0 => 0
if is?(z, opEllipticF) then
args := argument(retract(z)@K)
m = args(2) => return args(1)
kernel(opJacobiSn, [z, m])
elJacobiSn : List F -> F
elJacobiSn(l : List F) : F == eJacobiSn(l(1), l(2))
evaluate(opJacobiSn, elJacobiSn)$BasicOperatorFunctions1(F)
jacobiGradHelper(z : F, m : F) : F ==
(z - ellipticE(jacobiSn(z, m), m)/(1 - m))/m
eJacobiSnGrad_z(l : List F) : F ==
z := l(1)
m := l(2)
jacobiCn(z, m)*jacobiDn(z, m)
eJacobiSnGrad_m(l : List F) : F ==
z := l(1)
m := l(2)
ahalf*(eJacobiSnGrad_z(l)*jacobiGradHelper(z, m) +
jacobiSn(z, m)*jacobiCn(z, m)^2/(1 - m))
derivative(opJacobiSn, [eJacobiSnGrad_z, eJacobiSnGrad_m])
-- handle JacobiCn
opJacobiCn := operator('jacobiCn)$CommonOperators
jacobiCn(z, m) == opJacobiCn(z, m)
eJacobiCn(z : F, m : F) : F ==
z = 0 => 1
kernel(opJacobiCn, [z, m])
elJacobiCn(l : List F) : F == eJacobiCn(l(1), l(2))
evaluate(opJacobiCn, elJacobiCn)$BasicOperatorFunctions1(F)
eJacobiCnGrad_z(l : List F) : F ==
z := l(1)
m := l(2)
-jacobiSn(z, m)*jacobiDn(z, m)
eJacobiCnGrad_m(l : List F) : F ==
z := l(1)
m := l(2)
ahalf*(eJacobiCnGrad_z(l)*jacobiGradHelper(z, m) -
jacobiSn(z, m)^2*jacobiCn(z, m)/(1 - m))
derivative(opJacobiCn, [eJacobiCnGrad_z, eJacobiCnGrad_m])
-- handle JacobiDn
opJacobiDn := operator('jacobiDn)$CommonOperators
jacobiDn(z, m) == opJacobiDn(z, m)
eJacobiDn(z : F, m : F) : F ==
z = 0 => 1
kernel(opJacobiDn, [z, m])
elJacobiDn(l : List F) : F == eJacobiDn(l(1), l(2))
evaluate(opJacobiDn, elJacobiDn)$BasicOperatorFunctions1(F)
eJacobiDnGrad_z(l : List F) : F ==
z := l(1)
m := l(2)
-m*jacobiSn(z, m)*jacobiCn(z, m)
eJacobiDnGrad_m(l : List F) : F ==
z := l(1)
m := l(2)
ahalf*(eJacobiDnGrad_z(l)*jacobiGradHelper(z, m) -
jacobiSn(z, m)^2*jacobiDn(z, m)/(1 - m))
derivative(opJacobiDn, [eJacobiDnGrad_z, eJacobiDnGrad_m])
-- handle JacobiZeta
opJacobiZeta := operator('jacobiZeta)$CommonOperators
jacobiZeta(z, m) == opJacobiZeta(z, m)
eJacobiZeta(z : F, m : F) : F ==
z = 0 => 0
kernel(opJacobiZeta, [z, m])
elJacobiZeta(l : List F) : F == eJacobiZeta(l(1), l(2))
evaluate(opJacobiZeta, elJacobiZeta)$BasicOperatorFunctions1(F)
eJacobiZetaGrad_z(l : List F) : F ==
z := l(1)
m := l(2)
dn := jacobiDn(z, m)
dn*dn - ellipticE(m)/ellipticK(m)
eJacobiZetaGrad_m(l : List F) : F ==
z := l(1)
m := l(2)
ek := ellipticK(m)
ee := ellipticE(m)
er := ee/ek
dn := jacobiDn(z, m)
res1 := (dn*dn + m - 1)*jacobiZeta(z, m)
res2 := res1 + (m - 1)*z*dn*dn
res3 := res2 - m*jacobiCn(z, m)*jacobiDn(z, m)*jacobiSn(z, m)
res4 := res3 + z*(1 - m + dn*dn)*er
ahalf*(res4 - z*er*er)/(m*m - m)
derivative(opJacobiZeta, [eJacobiZetaGrad_z, eJacobiZetaGrad_m])
-- handle JacobiTheta
opJacobiTheta := operator('jacobiTheta)$CommonOperators
jacobiTheta(q, z) == opJacobiTheta(q, z)
eJacobiTheta(q : F, z : F) : F ==
kernel(opJacobiTheta, [q, z])
elJacobiTheta(l : List F) : F == eJacobiTheta(l(1), l(2))
evaluate(opJacobiTheta, elJacobiTheta)$BasicOperatorFunctions1(F)
-- handle LerchPhi
opLerchPhi := operator('lerchPhi)$CommonOperators
lerchPhi(z, s, a) == opLerchPhi(z, s, a)
eLerchPhi(z : F, s : F, a : F) : F ==
-- z = 0 => 1/a^s
a = 1 => polylog(s, z)/z
kernel(opLerchPhi, [z, s, a])
elLerchPhi(l : List F) : F == eLerchPhi(l(1), l(2), l(3))
evaluate(opLerchPhi, elLerchPhi)$BasicOperatorFunctions1(F)
dLerchPhi(l : List F, t : SE) : F ==
z := l(1)
s := l(2)
a := l(3)
dz := differentiate(z, t)*(lerchPhi(z, s - 1, a) -
a*lerchPhi(z, s, a))/z
da := -differentiate(a, t)*s*lerchPhi(z, s + 1, a)
dm := dummy
differentiate(s, t)*kernel(opdiff, [opLerchPhi [z, dm, a], dm, s])
+ dz + da
setProperty(opLerchPhi, SPECIALDIFF, dLerchPhi@((List F, SE)->F)
pretend None)
-- handle RiemannZeta
opRiemannZeta := operator('riemannZeta)$CommonOperators
riemannZeta(z) == opRiemannZeta(z)
eRiemannZeta(z : F) : F ==
kernel(opRiemannZeta, [z])
elRiemannZeta(l : List F) : F == eRiemannZeta(l(1))
evaluate(opRiemannZeta, elRiemannZeta)$BasicOperatorFunctions1(F)
-- orthogonal polynomials
charlierC(n : F, a : F, z : F) : F == opCharlierC(n, a, z)
eCharlierC(n : F, a : F, z : F) : F ==
n = 0 => 1
n = 1 => (z - a)/a
kernel(opCharlierC, [n, a, z])
elCharlierC(l : List F) : F == eCharlierC(l(1), l(2), l(3))
evaluate(opCharlierC, elCharlierC)$BasicOperatorFunctions1(F)
hermiteH(n : F, z: F) : F == opHermiteH(n, z)
eHermiteH(n : F, z: F) : F ==
n = -1 => 0
n = 0 => 1
n = 1 => (2::F)*z
kernel(opHermiteH, [n, z])
elHermiteH(l : List F) : F == eHermiteH(l(1), l(2))
evaluate(opHermiteH, elHermiteH)$BasicOperatorFunctions1(F)
eHermiteHGrad_z(n : F, z : F) : F == (2::F)*n*hermiteH(n - 1, z)
dHermiteH(l : List F, t : SE) : F ==
grad2(l, t, opHermiteH, eHermiteHGrad_z)
setProperty(opHermiteH, SPECIALDIFF, dHermiteH@((List F, SE)->F)
pretend None)
jacobiP(n : F, a : F, b : F, z : F) : F == opJacobiP(n, a, b, z)
eJacobiP(n : F, a : F, b : F, z : F) : F ==
n = -1 => 0
n = 0 => 1
n = 1 => ahalf*(a - b) + (1 + ahalf*(a + b))*z
kernel(opJacobiP, [n, a, b, z])
elJacobiP(l : List F) : F == eJacobiP(l(1), l(2), l(3), l(4))
evaluate(opJacobiP, elJacobiP)$BasicOperatorFunctions1(F)
eJacobiPGrad_z(n : F, a : F, b : F, z : F) : F ==
ahalf*(a + b + n + 1)*jacobiP(n - 1, a + 1, b + 1, z)
dJacobiP(l : List F, t : SE) : F ==
grad4(l, t, opJacobiP, eJacobiPGrad_z)
setProperty(opJacobiP, SPECIALDIFF, dJacobiP@((List F, SE)->F)
pretend None)
laguerreL(n : F, a : F, z : F) : F == opLaguerreL(n, a, z)
eLaguerreL(n : F, a : F, z : F) : F ==
n = -1 => 0
n = 0 => 1
n = 1 => (1 + a - z)
kernel(opLaguerreL, [n, a, z])
elLaguerreL(l : List F) : F == eLaguerreL(l(1), l(2), l(3))
evaluate(opLaguerreL, elLaguerreL)$BasicOperatorFunctions1(F)
eLaguerreLGrad_z(n : F, a : F, z : F) : F ==
laguerreL(n - 1, a + 1, z)
dLaguerreL(l : List F, t : SE) : F ==
grad3(l, t, opLaguerreL, eLaguerreLGrad_z)
setProperty(opLaguerreL, SPECIALDIFF, dLaguerreL@((List F, SE)->F)
pretend None)
meixnerM(n : F, b : F, c : F, z : F) : F == opMeixnerM(n, b, c, z)
eMeixnerM(n : F, b : F, c : F, z : F) : F ==
n = 0 => 1
n = 1 => (c - 1)*z/(c*b) + 1
kernel(opMeixnerM, [n, b, c, z])
elMeixnerM(l : List F) : F == eMeixnerM(l(1), l(2), l(3), l(4))
evaluate(opMeixnerM, elMeixnerM)$BasicOperatorFunctions1(F)
--
belong? op == has?(op, SPECIAL)
operator op ==
is?(op, 'abs) => opabs
is?(op, 'conjugate)=> opconjugate
is?(op, 'Gamma) => opGamma
is?(op, 'Gamma2) => opGamma2
is?(op, 'Beta) => opBeta
is?(op, 'digamma) => opdigamma
is?(op, 'polygamma)=> oppolygamma
is?(op, 'besselJ) => opBesselJ
is?(op, 'besselY) => opBesselY
is?(op, 'besselI) => opBesselI
is?(op, 'besselK) => opBesselK
is?(op, 'airyAi) => opAiryAi
is?(op, 'airyAiPrime) => opAiryAiPrime
is?(op, 'airyBi) => opAiryBi
is?(op, 'airyBiPrime) => opAiryBiPrime
is?(op, 'lambertW) => opLambertW
is?(op, 'polylog) => opPolylog
is?(op, 'weierstrassP) => opWeierstrassP
is?(op, 'weierstrassPPrime) => opWeierstrassPPrime
is?(op, 'weierstrassSigma) => opWeierstrassSigma
is?(op, 'weierstrassZeta) => opWeierstrassZeta
is?(op, 'hypergeometricF) => opHypergeometricF
is?(op, 'meijerG) => opMeijerG
-- is?(op, 'weierstrassPInverse) => opWeierstrassPInverse
is?(op, 'whittakerM) => opWhittakerM
is?(op, 'whittakerW) => opWhittakerW
is?(op, 'angerJ) => opAngerJ
is?(op, 'weberE) => opWeberE
is?(op, 'struveH) => opStruveH
is?(op, 'struveL) => opStruveL
is?(op, 'hankelH1) => opHankelH1
is?(op, 'hankelH2) => opHankelH2
is?(op, 'lommelS1) => opLommelS1
is?(op, 'lommelS2) => opLommelS2
is?(op, 'kummerM) => opKummerM
is?(op, 'kummerU) => opKummerU
is?(op, 'legendreP) => opLegendreP
is?(op, 'legendreQ) => opLegendreQ
is?(op, 'kelvinBei) => opKelvinBei
is?(op, 'kelvinBer) => opKelvinBer
is?(op, 'kelvinKei) => opKelvinKei
is?(op, 'kelvinKer) => opKelvinKer
is?(op, 'ellipticK) => opEllipticK
is?(op, 'ellipticE) => opEllipticE
is?(op, 'ellipticE2) => opEllipticE2
is?(op, 'ellipticF) => opEllipticF
is?(op, 'ellipticPi) => opEllipticPi
is?(op, 'jacobiSn) => opJacobiSn
is?(op, 'jacobiCn) => opJacobiCn
is?(op, 'jacobiDn) => opJacobiDn
is?(op, 'jacobiZeta) => opJacobiZeta
is?(op, 'jacobiTheta) => opJacobiTheta
is?(op, 'lerchPhi) => opLerchPhi
is?(op, 'riemannZeta) => opRiemannZeta
is?(op, 'charlierC) => opCharlierC
is?(op, 'hermiteH) => opHermiteH
is?(op, 'jacobiP) => opJacobiP
is?(op, 'laguerreL) => opLaguerreL
is?(op, 'meixnerM) => opMeixnerM
is?(op, '%logGamma) => op_log_gamma
is?(op, '%eis) => op_eis
is?(op, '%erfs) => op_erfs
is?(op, '%erfis) => op_erfis
error "Not a special operator"
-- Could put more unconditional special rules for other functions here
iGamma x ==
-- one? x => x
(x = 1) => x
kernel(opGamma, x)
iabs x ==
zero? x => 0
one? x => 1
is?(x, opabs) => x
is?(x, opconjugate) => kernel(opabs, argument(retract(x)@K)(1))
if R has abs : R -> R then
a := retractIfCan(x)@Union(R, "failed")
a case R => abs(a::R)::F
smaller?(x, 0) => kernel(opabs, -x)
kernel(opabs, x)
iconjugate x ==
zero? x => 0
is?(x, opconjugate) => argument(retract(x)@K)(1)
is?(x, opabs) => x
kernel(opconjugate, x)
iBeta(x, y) == kernel(opBeta, [x, y])
idigamma x == kernel(opdigamma, x)
iiipolygamma(n, x) == kernel(oppolygamma, [n, x])
iiiBesselJ(x, y) == kernel(opBesselJ, [x, y])
iiiBesselY(x, y) == kernel(opBesselY, [x, y])
iiiBesselI(x, y) == kernel(opBesselI, [x, y])
iiiBesselK(x, y) == kernel(opBesselK, [x, y])
import from Fraction(Integer)
if F has ElementaryFunctionCategory then
iAiryAi x ==
zero?(x) => 1::F/((3::F)^twothirds*Gamma(twothirds))
kernel(opAiryAi, x)
iAiryAiPrime x ==
zero?(x) => -1::F/((3::F)^athird*Gamma(athird))
kernel(opAiryAiPrime, x)
iAiryBi x ==
zero?(x) => 1::F/((3::F)^asixth*Gamma(twothirds))
kernel(opAiryBi, x)
iAiryBiPrime x ==
zero?(x) => (3::F)^asixth/Gamma(athird)
kernel(opAiryBiPrime, x)
else
iAiryAi x == kernel(opAiryAi, x)
iAiryAiPrime x == kernel(opAiryAiPrime, x)
iAiryBi x == kernel(opAiryBi, x)
iAiryBiPrime x == kernel(opAiryBiPrime, x)
if F has ElementaryFunctionCategory then
iLambertW(x) ==
zero?(x) => 0
x = exp(1$F) => 1$F
x = -exp(-1$F) => -1$F
kernel(opLambertW, x)
else
iLambertW(x) ==
zero?(x) => 0
kernel(opLambertW, x)
if F has ElementaryFunctionCategory then
if F has LiouvillianFunctionCategory then
iiPolylog(s, x) ==
s = 1 => -log(1 - x)
s = 2::F => dilog(1 - x)
kernel(opPolylog, [s, x])
else
iiPolylog(s, x) ==
s = 1 => -log(1 - x)
kernel(opPolylog, [s, x])
else
iiPolylog(s, x) == kernel(opPolylog, [s, x])
iPolylog(l) == iiPolylog(first l, second l)
iWeierstrassP(g2, g3, x) == kernel(opWeierstrassP, [g2, g3, x])
iWeierstrassPPrime(g2, g3, x) == kernel(opWeierstrassPPrime, [g2, g3, x])
iWeierstrassSigma(g2, g3, x) ==
x = 0 => 0
kernel(opWeierstrassSigma, [g2, g3, x])
iWeierstrassZeta(g2, g3, x) == kernel(opWeierstrassZeta, [g2, g3, x])
-- Could put more conditional special rules for other functions here
if R has abs : R -> R then
import from Polynomial R
iiabs x ==
(r := retractIfCan(x)@Union(Fraction Polynomial R, "failed"))
case "failed" => iabs x
f := r::Fraction Polynomial R
(a := retractIfCan(numer f)@Union(R, "failed")) case "failed" or
(b := retractIfCan(denom f)@Union(R,"failed")) case "failed" => iabs x
abs(a::R)::F / abs(b::R)::F
else iiabs x == iabs x
iiconjugate(x:F):F ==
is?(x, opconjugate) => argument(retract(x)@K)(1)
is?(x, opabs) => x
x:=eval(x,kernels(x), _
map((k:Kernel F):F +-> (height(k)=1=>iconjugate(k::F);map(iiconjugate,k)), _
kernels(x))$ListFunctions2(Kernel F,F))
if R has conjugate : R -> R then
x:=map(conjugate$R,numer x)::F / _
map(conjugate$R,denom x)::F
return x
if R has SpecialFunctionCategory then
iiGamma x ==
(r := retractIfCan(x)@Union(R,"failed")) case "failed" => iGamma x
Gamma(r::R)::F
iiBeta l ==
(r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _
(s := retractIfCan(second l)@Union(R,"failed")) case "failed" _
=> iBeta(first l, second l)
Beta(r::R, s::R)::F
iidigamma x ==
(r := retractIfCan(x)@Union(R,"failed")) case "failed" => idigamma x
digamma(r::R)::F
iipolygamma l ==
(s := retractIfCan(first l)@Union(R,"failed")) case "failed" or _
(r := retractIfCan(second l)@Union(R,"failed")) case "failed" _
=> iiipolygamma(first l, second l)
polygamma(s::R, r::R)::F
iiBesselJ l ==
(r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _
(s := retractIfCan(second l)@Union(R,"failed")) case "failed" _
=> iiiBesselJ(first l, second l)
besselJ(r::R, s::R)::F
iiBesselY l ==
(r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _
(s := retractIfCan(second l)@Union(R,"failed")) case "failed" _
=> iiiBesselY(first l, second l)
besselY(r::R, s::R)::F
iiBesselI l ==
(r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _
(s := retractIfCan(second l)@Union(R,"failed")) case "failed" _
=> iiiBesselI(first l, second l)
besselI(r::R, s::R)::F
iiBesselK l ==
(r := retractIfCan(first l)@Union(R,"failed")) case "failed" or _
(s := retractIfCan(second l)@Union(R,"failed")) case "failed" _
=> iiiBesselK(first l, second l)
besselK(r::R, s::R)::F
iiAiryAi x ==
(r := retractIfCan(x)@Union(R,"failed")) case "failed" => iAiryAi x
airyAi(r::R)::F
iiAiryAiPrime x ==
(r := retractIfCan(x)@Union(R,"failed")) case "failed" => iAiryAiPrime x
airyAiPrime(r::R)::F
iiAiryBi x ==
(r := retractIfCan(x)@Union(R,"failed")) case "failed" => iAiryBi x
airyBi(r::R)::F
iiAiryBi x ==
(r := retractIfCan(x)@Union(R,"failed")) case "failed" => iAiryBiPrime x
airyBiPrime(r::R)::F
else
if R has RetractableTo Integer then
iiGamma x ==
(r := retractIfCan(x)@Union(Integer, "failed")) case Integer
and (r::Integer >= 1) => factorial(r::Integer - 1)::F
iGamma x
else
iiGamma x == iGamma x
iiBeta l == iBeta(first l, second l)
iidigamma x == idigamma x
iipolygamma l == iiipolygamma(first l, second l)
iiBesselJ l == iiiBesselJ(first l, second l)
iiBesselY l == iiiBesselY(first l, second l)
iiBesselI l == iiiBesselI(first l, second l)
iiBesselK l == iiiBesselK(first l, second l)
iiAiryAi x == iAiryAi x
iiAiryAiPrime x == iAiryAiPrime x
iiAiryBi x == iAiryBi x
iiAiryBiPrime x == iAiryBiPrime x
iiWeierstrassP l == iWeierstrassP(first l, second l, third l)
iiWeierstrassPPrime l == iWeierstrassPPrime(first l, second l, third l)
iiWeierstrassSigma l == iWeierstrassSigma(first l, second l, third l)
iiWeierstrassZeta l == iWeierstrassZeta(first l, second l, third l)
-- Default behaviour is to build a kernel
evaluate(opGamma, iiGamma)$BasicOperatorFunctions1(F)
evaluate(opabs, iiabs)$BasicOperatorFunctions1(F)
evaluate(opconjugate, iiconjugate)$BasicOperatorFunctions1(F)
-- evaluate(opGamma2 , iiGamma2 )$BasicOperatorFunctions1(F)
evaluate(opBeta , iiBeta )$BasicOperatorFunctions1(F)
evaluate(opdigamma , iidigamma )$BasicOperatorFunctions1(F)
evaluate(oppolygamma , iipolygamma)$BasicOperatorFunctions1(F)
evaluate(opBesselJ , iiBesselJ )$BasicOperatorFunctions1(F)
evaluate(opBesselY , iiBesselY )$BasicOperatorFunctions1(F)
evaluate(opBesselI , iiBesselI )$BasicOperatorFunctions1(F)
evaluate(opBesselK , iiBesselK )$BasicOperatorFunctions1(F)
evaluate(opAiryAi , iiAiryAi )$BasicOperatorFunctions1(F)
evaluate(opAiryAiPrime, iiAiryAiPrime)$BasicOperatorFunctions1(F)
evaluate(opAiryBi , iiAiryBi )$BasicOperatorFunctions1(F)
evaluate(opAiryBiPrime, iiAiryBiPrime)$BasicOperatorFunctions1(F)
evaluate(opLambertW, iLambertW)$BasicOperatorFunctions1(F)
evaluate(opPolylog, iPolylog)$BasicOperatorFunctions1(F)
evaluate(opWeierstrassP, iiWeierstrassP)$BasicOperatorFunctions1(F)
evaluate(opWeierstrassPPrime,
iiWeierstrassPPrime)$BasicOperatorFunctions1(F)
evaluate(opWeierstrassSigma, iiWeierstrassSigma)$BasicOperatorFunctions1(F)
evaluate(opWeierstrassZeta, iiWeierstrassZeta)$BasicOperatorFunctions1(F)
evaluate(opHypergeometricF, iiHypergeometricF)$BasicOperatorFunctions1(F)
evaluate(opMeijerG, iiMeijerG)$BasicOperatorFunctions1(F)
diff1(op : OP, n : F, x : F) : F ==
dm := dummy
kernel(opdiff, [op [dm, x], dm, n])
iBesselJ(l : List F, t : SE) : F ==
n := first l; x := second l
differentiate(n, t)*diff1(opBesselJ, n, x)
+ differentiate(x, t) * ahalf * (besselJ (n-1, x) - besselJ (n+1, x))
iBesselY(l : List F, t : SE) : F ==
n := first l; x := second l
differentiate(n, t)*diff1(opBesselY, n, x)
+ differentiate(x, t) * ahalf * (besselY (n-1, x) - besselY (n+1, x))
iBesselI(l : List F, t : SE) : F ==
n := first l; x := second l
differentiate(n, t)*diff1(opBesselI, n, x)
+ differentiate(x, t)* ahalf * (besselI (n-1, x) + besselI (n+1, x))
iBesselK(l : List F, t : SE) : F ==
n := first l; x := second l
differentiate(n, t)*diff1(opBesselK, n, x)
- differentiate(x, t)* ahalf * (besselK (n-1, x) + besselK (n+1, x))
dPolylog(l : List F, t : SE) : F ==
s := first l; x := second l
differentiate(s, t)*diff1(opPolylog, s, x)
+ differentiate(x, t)*polylog(s-1, x)/x
ipolygamma(l : List F, x : SE) : F ==
import from List(Symbol)
member?(x, variables first l) =>
error "cannot differentiate polygamma with respect to the first argument"
n := first l; y := second l
differentiate(y, x)*polygamma(n+1, y)
iBetaGrad1(l : List F) : F ==
x := first l; y := second l
Beta(x, y)*(digamma x - digamma(x+y))
iBetaGrad2(l : List F) : F ==
x := first l; y := second l
Beta(x, y)*(digamma y - digamma(x+y))
if F has ElementaryFunctionCategory then
iGamma2(l : List F, t : SE) : F ==
a := first l; x := second l
differentiate(a, t)*diff1(opGamma2, a, x)
- differentiate(x, t)* x ^ (a - 1) * exp(-x)
setProperty(opGamma2, SPECIALDIFF, iGamma2@((List F, SE)->F)
pretend None)
inGamma2(li : List INP) : INP ==
convert cons(convert('Gamma), li)
input(opGamma2, inGamma2@((List INP) -> INP))
dLambertW(x : F) : F ==
lw := lambertW(x)
lw/(x*(1+lw))
iWeierstrassPGrad1(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
wp := weierstrassP(g2, g3, x)
(weierstrassPPrime(g2, g3, x)*(-9*ahalf*g3
*weierstrassZeta(g2, g3, x) + afourth*g2^2*x)
- 9*g3*wp^2 + ahalf*g2^2*wp + 3*ahalf*g2*g3)/delta
iWeierstrassPGrad2(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
wp := weierstrassP(g2, g3, x)
(weierstrassPPrime(g2, g3, x)*(3*g2*weierstrassZeta(g2, g3, x)
- 9*ahalf*g3*x) + 6*g2*wp^2 - 9*g3*wp-g2^2)/delta
iWeierstrassPGrad3(l : List F) : F ==
weierstrassPPrime(first l, second l, third l)
iWeierstrassPPrimeGrad1(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
wp := weierstrassP(g2, g3, x)
wpp := weierstrassPPrime(g2, g3, x)
wpp2 := 6*wp^2 - ahalf*g2
(wpp2*(-9*ahalf*g3*weierstrassZeta(g2, g3, x) + afourth*g2^2*x)
+ wpp*(9*ahalf*g3*wp + afourth*g2^2) - 18*g3*wp*wpp
+ ahalf*g2^2*wpp)/delta
iWeierstrassPPrimeGrad2(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
wp := weierstrassP(g2, g3, x)
wpp := weierstrassPPrime(g2, g3, x)
wpp2 := 6*wp^2 - ahalf*g2
(wpp2*(3*g2*weierstrassZeta(g2, g3, x) - 9*ahalf*g3*x)
+ wpp*(-3*g2*wp - 9*ahalf*g3) + 12*g2*wp*wpp - 9*g3*wpp)/delta
iWeierstrassPPrimeGrad3(l : List F) : F ==
g2 := first l
6*weierstrassP(g2, second l, third l)^2 - ahalf*g2
iWeierstrassSigmaGrad1(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
ws := weierstrassSigma(g2, g3, x)
wz := weierstrassZeta(g2, g3, x)
wsp := wz*ws
wsp2 := - weierstrassP(g2, g3, x)*ws + wz^2*ws
afourth*(-9*g3*wsp2 - g2^2*ws
- 3*afourth*g2*g3*x^2*ws + g2^2*x*wsp)/delta
iWeierstrassSigmaGrad2(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
ws := weierstrassSigma(g2, g3, x)
wz := weierstrassZeta(g2, g3, x)
wsp := wz*ws
wsp2 := - weierstrassP(g2, g3, x)*ws + wz^2*ws
ahalf*(3*g2*wsp2 + 9*g3*ws
+ afourth*g2^2*x^2*ws - 9*g3*x*wsp)/delta
iWeierstrassSigmaGrad3(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
weierstrassZeta(g2, g3, x)*weierstrassSigma(g2, g3, x)
iWeierstrassZetaGrad1(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
wp := weierstrassP(g2, g3, x)
(ahalf*weierstrassZeta(g2, g3, x)*(9*g3*wp + ahalf*g2^2)
- ahalf*g2*x*(ahalf*g2*wp+3*afourth*g3)
+ 9*afourth*g3*weierstrassPPrime(g2, g3, x))/delta
iWeierstrassZetaGrad2(l : List F) : F ==
g2 := first l
g3 := second l
x := third l
delta := g2^3 - 27*g3^2
wp := weierstrassP(g2, g3, x)
(-3*weierstrassZeta(g2, g3, x)*(g2*wp + 3*ahalf*g3) +
ahalf*x*(9*g3*wp + ahalf*g2^2)
- 3*ahalf*g2*weierstrassPPrime(g2, g3, x))/delta
iWeierstrassZetaGrad3(l : List F) : F ==
-weierstrassP(first l, second l, third l)
OF ==> OutputForm
SEX ==> SExpression
NNI ==> NonNegativeInteger
dconjugate(lo : List OF) : OF == overbar lo.1
display(opconjugate,dconjugate)
if F has RetractableTo(Integer) then
get_int_listf : List F -> List Integer
get_int_listo : (Integer, List OF) -> List Integer
get_int_listi : (Integer, List INP) -> List Integer
get_int_listf(lf : List F) : List Integer ==
map(z +-> retract(z)@Integer, lf)$ListFunctions2(F, Integer)
replace_i(lp : List F, v : F, i : NNI) : List F ==
concat(first(lp, (i - 1)::NNI), cons(v, rest(lp, i)))
iiHypergeometricF(l) ==
n := #l
z := l(n-2)
if z = 0 then
nn := (n - 2)::NNI
pq := rest(l, nn)
pqi := get_int_listf(pq)
p := first(pqi)
q := first(rest(pqi))
p <= q + 1 => return 1
kernel(opHypergeometricF, l)
idvsum(op : BasicOperator, n : Integer, l : List F, x : Symbol) : F ==
res : F := 0
for i in 1..n for a in l repeat
dm := dummy
nl := replace_i(l, dm, i)
res := res + differentiate(a, x)*kernel(opdiff, [op nl, dm, a])
res
dvhypergeom(l : List F, x : Symbol) : F ==
n := #l
nn := (n - 2)::NNI
pq := rest(l, nn)
pqi := get_int_listf(pq)
ol := l
l := first(l, nn)
l1 := reverse(l)
z := first(l1)
p := first(pqi)
q := first(rest(pqi))
aprod := 1@F
nl := []@(List F)
for i in 1..p repeat
a := first(l)
nl := cons(a + 1, nl)
aprod := aprod * a
l := rest(l)
bprod := 1@F
for i in 1..q repeat
b := first(l)
nl := cons(b + 1, nl)
bprod := bprod * b
l := rest(l)
nl0 := reverse!(nl)
nl1 := cons(z, pq)
nl := concat(nl0, nl1)
aprod := aprod/bprod
idvsum(opHypergeometricF, nn - 1, ol, x) +
differentiate(z, x)*aprod*opHypergeometricF(nl)
add_pairs_to_list(lp : List List F, l : List F) : List F ==
for p in lp repeat
#p ~= 2 => error "not a list of pairs"
l := cons(p(2), cons(p(1), l))
l
dvmeijer(l : List F, x : Symbol) : F ==
n := #l
nn := (n - 4)::NNI
l0 := l
nl := rest(l, nn)
nli := get_int_listf(nl)
l := first(l, nn)
l1 := reverse(l)
z := first(l1)
n1 := first(nli)
n2 := nli(2)
a := first l
sign : F := 1
if n1 > 0 or n2 > 0 then
na := a - 1
if n1 = 0 then sign := -1
l2 := cons(na, rest l)
else
na := a
if nli(3) > 0 then sign := -1
l2 := cons(a + 1, rest l)
nm : F := opMeijerG(concat(l2, nl))
om : F := opMeijerG(l0)
idvsum(opMeijerG, nn - 1, l0, x) +
differentiate(z, x)*(sign*nm + na*om)/z
get_if_list(n : Integer, lf : List INP) : List List INP ==
a := []@(List INP)
for i in 1..n repeat
a := cons(first(lf), a)
lf := rest(lf)
a := cons(convert('construct), reverse!(a))
[a, lf]
get_if_lists(ln : List Integer, lf : List INP) : List List INP ==
rl := []@(List List INP)
for n in ln repeat
al := get_if_list(n, lf)
rl := cons(first(al), rl)
lf := first(rest(al))
rl := reverse!(rl)
cons(lf, rl)
get_int_listi(n : Integer, lo : List INP) : List Integer ==
n0 := (#lo - n)::NNI
lo := rest(lo, n0)
rl := []@(List Integer)
for i in 1..n repeat
p := integer(first(lo) pretend SEX)$SEX
rl := cons(p, rl)
lo := rest(lo)
rl := reverse!(rl)
rl
get_of_list(n : Integer, lo : List OF) : List List OF ==
a := []@(List OF)
for i in 1..n repeat
a := cons(first(lo), a)
lo := rest(lo)
a := reverse!(a)
[a, lo]
get_of_lists(ln : List Integer, lo : List OF) : List List OF ==
rl := []@(List List OF)
for n in ln repeat
al := get_of_list(n, lo)
rl := cons(first(al), rl)
lo := first(rest(al))
rl := reverse!(rl)
cons(lo, rl)
get_int_listo(n : Integer, lo : List OF) : List Integer ==
n0 := (#lo - n)::NNI
lo := rest(lo, n0)
rl := []@(List Integer)
for i in 1..n repeat
p := integer(first(lo) pretend SEX)$SEX
rl := cons(p, rl)
lo := rest(lo)
rl := reverse!(rl)
rl
dhyper0(op : OF, lo : List OF) : OF ==
n0 := (#lo - 2)::NNI
pql := get_int_listo(2, lo)
lo := first(lo, n0)
al := get_of_lists(pql, lo)
lo := first(al)
al := rest(al)
a := first al
b := first(rest(al))
z := first(lo)
prefix(op, [bracket a, bracket b, z])
dhyper(lo : List OF) : OF ==
dhyper0("hypergeometricF"::Symbol::OF, lo)
ddhyper(lo : List OF) : OF ==
dhyper0(first lo, rest lo)
dmeijer0(op : OF, lo : List OF) : OF ==
n0 := (#lo - 4)::NNI
nl := get_int_listo(4, lo)
lo := first(lo, n0)
al := get_of_lists(nl, lo)
lo := first(al)
al := rest(al)
z := first(lo)
prefix(op, concat(
map(bracket, al)$ListFunctions2(List OF, OF), [z]))
dmeijer(lo : List OF) : OF ==
dmeijer0('meijerG::OF, lo)
ddmeijer(lo : List OF) : OF ==
dmeijer0(first lo, rest lo)
setProperty(opHypergeometricF, '%diffDisp,
ddhyper@(List OF -> OF) pretend None)
setProperty(opMeijerG, '%diffDisp,
ddmeijer@(List OF -> OF) pretend None)
display(opHypergeometricF, dhyper)
display(opMeijerG, dmeijer)
setProperty(opHypergeometricF, SPECIALDIFF,
dvhypergeom@((List F, Symbol)->F) pretend None)
setProperty(opMeijerG, SPECIALDIFF, dvmeijer@((List F, Symbol)->F)
pretend None)
inhyper(lf : List INP) : INP ==
pqi := get_int_listi(2, lf)
al := get_if_lists(pqi, lf)
lf := first(al)
al := rest(al)
a := first al
ai : INP := convert(a)
b := first(rest(al))
bi : INP := convert(b)
zi := first(lf)
li : List INP := [convert('hypergeometricF), ai, bi, zi]
convert(li)
input(opHypergeometricF, inhyper@((List INP) -> INP))
inmeijer(lf : List INP) : INP ==
pqi := get_int_listi(4, lf)
al := get_if_lists(pqi, lf)
lf := first(al)
al := rest(al)
a := first al
ai : INP := convert(a)
al := rest(al)
b := first(al)
bi : INP := convert(b)
al := rest(al)
c := first(al)
ci : INP := convert(c)
al := rest(al)
d := first(al)
di : INP := convert(d)
zi := first(lf)
li : List INP := [convert('meijerG), ai, bi, ci, di, zi]
convert(li)
input(opMeijerG, inmeijer@((List INP) -> INP))
else
iiHypergeometricF(l) == kernel(opHypergeometricF, l)
iiMeijerG(l) == kernel(opMeijerG, l)
d_eis(x : F) : F == -kernel(op_eis, x) + 1/x
if F has TranscendentalFunctionCategory
and F has RadicalCategory then
d_erfs(x : F) : F == 2*x*kernel(op_erfs, x) - 2::F/sqrt(pi())
d_erfis(x : F) : F == -2*x*kernel(op_erfis, x) + 2::F/sqrt(pi())
derivative(op_erfs, d_erfs)
derivative(op_erfis, d_erfis)
derivative(opabs, (x : F) : F +-> conjugate(x)*inv(2*abs(x)))
derivative(opconjugate, (x : F) : F +-> 0)
derivative(opGamma, (x : F) : F +-> digamma(x)*Gamma(x))
derivative(op_log_gamma, (x : F) : F +-> digamma(x))
derivative(opBeta, [iBetaGrad1, iBetaGrad2])
derivative(opdigamma, (x : F) : F +-> polygamma(1, x))
derivative(op_eis, d_eis)
derivative(opAiryAi, (x : F) : F +-> airyAiPrime(x))
derivative(opAiryAiPrime, (x : F) : F +-> x*airyAi(x))
derivative(opAiryBi, (x : F) : F +-> airyBiPrime(x))
derivative(opAiryBiPrime, (x : F) : F +-> x*airyBi(x))
derivative(opLambertW, dLambertW)
derivative(opWeierstrassP, [iWeierstrassPGrad1, iWeierstrassPGrad2,
iWeierstrassPGrad3])
derivative(opWeierstrassPPrime, [iWeierstrassPPrimeGrad1,
iWeierstrassPPrimeGrad2, iWeierstrassPPrimeGrad3])
derivative(opWeierstrassSigma, [iWeierstrassSigmaGrad1,
iWeierstrassSigmaGrad2, iWeierstrassSigmaGrad3])
derivative(opWeierstrassZeta, [iWeierstrassZetaGrad1,
iWeierstrassZetaGrad2, iWeierstrassZetaGrad3])
setProperty(oppolygamma, SPECIALDIFF, ipolygamma@((List F, SE)->F)
pretend None)
setProperty(opBesselJ, SPECIALDIFF, iBesselJ@((List F, SE)->F)
pretend None)
setProperty(opBesselY, SPECIALDIFF, iBesselY@((List F, SE)->F)
pretend None)
setProperty(opBesselI, SPECIALDIFF, iBesselI@((List F, SE)->F)
pretend None)
setProperty(opBesselK, SPECIALDIFF, iBesselK@((List F, SE)->F)
pretend None)
setProperty(opPolylog, SPECIALDIFF, dPolylog@((List F, SE)->F)
pretend None)
spad
Compiling FriCAS source code from file
/var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/2400700586270179737-25px001.spad
using old system compiler.
FSPECX abbreviates package FunctionalSpecialFunction
(EVAL-WHEN (EVAL LOAD) (SETQ |$tryRecompileArguments| NIL))
Value = NIL
------------------------------------------------------------------------
initializing NRLIB FSPECX for FunctionalSpecialFunction
compiling into NRLIB FSPECX
****** Domain: R already in scope
processing macro definition INP ==> InputForm
processing macro definition SPECIALINPUT ==> QUOTE %specialInput
compiling exported abs : F -> F
Time: 0.04 SEC.
compiling exported conjugate : F -> F
Time: 0 SEC.
compiling exported Gamma : F -> F
Time: 0 SEC.
compiling exported Gamma : (F,F) -> F
Time: 0 SEC.
compiling exported Beta : (F,F) -> F
Time: 0 SEC.
compiling exported digamma : F -> F
Time: 0 SEC.
compiling exported polygamma : (F,F) -> F
Time: 0 SEC.
compiling exported besselJ : (F,F) -> F
Time: 0 SEC.
compiling exported besselY : (F,F) -> F
Time: 0 SEC.
compiling exported besselI : (F,F) -> F
Time: 0 SEC.
compiling exported besselK : (F,F) -> F
Time: 0 SEC.
compiling exported airyAi : F -> F
Time: 0 SEC.
compiling exported airyAiPrime : F -> F
Time: 0.01 SEC.
compiling exported airyBi : F -> F
Time: 0 SEC.
compiling exported airyBiPrime : F -> F
Time: 0 SEC.
compiling exported lambertW : F -> F
Time: 0 SEC.
compiling exported polylog : (F,F) -> F
Time: 0 SEC.
compiling exported weierstrassP : (F,F,F) -> F
Time: 0 SEC.
compiling exported weierstrassPPrime : (F,F,F) -> F
Time: 0 SEC.
compiling exported weierstrassSigma : (F,F,F) -> F
Time: 0 SEC.
compiling exported weierstrassZeta : (F,F,F) -> F
Time: 0 SEC.
****** Domain: F already in scope
augmenting F: (RetractableTo (Integer))
augmenting $: (SIGNATURE $ hypergeometricF (F (List F) (List F) F))
augmenting $: (SIGNATURE $ meijerG (F (List F) (List F) (List F) (List F) F))
compiling exported hypergeometricF : (List F,List F,F) -> F
Time: 0.02 SEC.
compiling exported meijerG : (List F,List F,List F,List F,F) -> F
Time: 0 SEC.
importing List Kernel F
processing macro definition dummy ==> ::((Sel (Symbol) new),F)
compiling local grad2 : (List F,Symbol,BasicOperator,(F,F) -> F) -> F
Time: 0.03 SEC.
compiling local grad3 : (List F,Symbol,BasicOperator,(F,F,F) -> F) -> F
Time: 0.02 SEC.
compiling local grad4 : (List F,Symbol,BasicOperator,(F,F,F,F) -> F) -> F
Time: 0.03 SEC.
compiling exported whittakerM : (F,F,F) -> F
Time: 0 SEC.
compiling local eWhittakerM : (F,F,F) -> F
Time: 0 SEC.
compiling local elWhittakerM : List F -> F
Time: 0 SEC.
compiling local eWhittakerMGrad_z : (F,F,F) -> F
Time: 0.02 SEC.
compiling local dWhittakerM : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported whittakerW : (F,F,F) -> F
Time: 0 SEC.
compiling local eWhittakerW : (F,F,F) -> F
Time: 0 SEC.
compiling local elWhittakerW : List F -> F
Time: 0 SEC.
compiling local eWhittakerWGrad_z : (F,F,F) -> F
Time: 0.01 SEC.
compiling local dWhittakerW : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported angerJ : (F,F) -> F
Time: 0 SEC.
****** Domain: F already in scope
augmenting F: (TranscendentalFunctionCategory)
compiling local eAngerJ : (F,F) -> F
Time: 0 SEC.
compiling local elAngerJ : List F -> F
Time: 0.01 SEC.
compiling local eAngerJGrad_z : (F,F) -> F
Time: 0.01 SEC.
compiling local dAngerJ : (List F,Symbol) -> F
Time: 0 SEC.
compiling local eeAngerJ : List F -> F
Time: 0 SEC.
compiling exported weberE : (F,F) -> F
Time: 0.01 SEC.
****** Domain: F already in scope
augmenting F: (TranscendentalFunctionCategory)
compiling local eWeberE : (F,F) -> F
Time: 0.02 SEC.
compiling local elWeberE : List F -> F
Time: 0 SEC.
compiling local eWeberEGrad_z : (F,F) -> F
Time: 0.01 SEC.
compiling local dWeberE : (List F,Symbol) -> F
Time: 0 SEC.
compiling local eeWeberE : List F -> F
Time: 0.01 SEC.
compiling exported struveH : (F,F) -> F
Time: 0 SEC.
compiling local eStruveH : (F,F) -> F
Time: 0 SEC.
compiling local elStruveH : List F -> F
Time: 0 SEC.
****** Domain: F already in scope
augmenting F: (TranscendentalFunctionCategory)
****** Domain: F already in scope
augmenting F: (RadicalCategory)
compiling local eStruveHGrad_z : (F,F) -> F
Time: 0.02 SEC.
compiling local dStruveH : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported struveL : (F,F) -> F
Time: 0 SEC.
compiling local eStruveL : (F,F) -> F
Time: 0 SEC.
compiling local elStruveL : List F -> F
Time: 0 SEC.
****** Domain: F already in scope
augmenting F: (TranscendentalFunctionCategory)
****** Domain: F already in scope
augmenting F: (RadicalCategory)
compiling local eStruveLGrad_z : (F,F) -> F
Time: 0.02 SEC.
compiling local dStruveL : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported hankelH1 : (F,F) -> F
Time: 0 SEC.
compiling local eHankelH1 : (F,F) -> F
Time: 0.01 SEC.
compiling local elHankelH1 : List F -> F
Time: 0 SEC.
compiling local eHankelH1Grad_z : (F,F) -> F
Time: 0 SEC.
compiling local dHankelH1 : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported hankelH2 : (F,F) -> F
Time: 0 SEC.
compiling local eHankelH2 : (F,F) -> F
Time: 0 SEC.
compiling local elHankelH2 : List F -> F
Time: 0 SEC.
compiling local eHankelH2Grad_z : (F,F) -> F
Time: 0 SEC.
compiling local dHankelH2 : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported lommelS1 : (F,F,F) -> F
Time: 0 SEC.
compiling local eLommelS1 : (F,F,F) -> F
Time: 0 SEC.
compiling local elLommelS1 : List F -> F
Time: 0 SEC.
compiling local eLommelS1Grad_z : (F,F,F) -> F
Time: 0.02 SEC.
compiling local dLommelS1 : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported lommelS2 : (F,F,F) -> F
Time: 0.01 SEC.
compiling local eLommelS2 : (F,F,F) -> F
Time: 0 SEC.
compiling local elLommelS2 : List F -> F
Time: 0 SEC.
compiling local eLommelS2Grad_z : (F,F,F) -> F
Time: 0.02 SEC.
compiling local dLommelS2 : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported kummerM : (F,F,F) -> F
Time: 0 SEC.
compiling local eKummerM : (F,F,F) -> F
Time: 0.01 SEC.
compiling local elKummerM : List F -> F
Time: 0 SEC.
compiling local eKummerMGrad_z : (F,F,F) -> F
Time: 0.02 SEC.
compiling local dKummerM : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported kummerU : (F,F,F) -> F
Time: 0.01 SEC.
compiling local eKummerU : (F,F,F) -> F
Time: 0 SEC.
compiling local elKummerU : List F -> F
Time: 0 SEC.
compiling local eKummerUGrad_z : (F,F,F) -> F
Time: 0.02 SEC.
compiling local dKummerU : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported legendreP : (F,F,F) -> F
Time: 0.01 SEC.
compiling local eLegendreP : (F,F,F) -> F
Time: 0 SEC.
compiling local elLegendreP : List F -> F
Time: 0 SEC.
compiling local eLegendrePGrad_z : (F,F,F) -> F
Time: 0.05 SEC.
compiling local dLegendreP : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported legendreQ : (F,F,F) -> F
Time: 0 SEC.
compiling local eLegendreQ : (F,F,F) -> F
Time: 0 SEC.
compiling local elLegendreQ : List F -> F
Time: 0 SEC.
compiling local eLegendreQGrad_z : (F,F,F) -> F
Time: 0.06 SEC.
compiling local dLegendreQ : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported kelvinBei : (F,F) -> F
Time: 0.01 SEC.
compiling local eKelvinBei : (F,F) -> F
Time: 0 SEC.
compiling local elKelvinBei : List F -> F
Time: 0 SEC.
****** Domain: F already in scope
augmenting F: (RadicalCategory)
compiling local eKelvinBeiGrad_z : (F,F) -> F
Time: 0.03 SEC.
compiling local dKelvinBei : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported kelvinBer : (F,F) -> F
Time: 0.01 SEC.
compiling local eKelvinBer : (F,F) -> F
Time: 0 SEC.
compiling local elKelvinBer : List F -> F
Time: 0 SEC.
****** Domain: F already in scope
augmenting F: (RadicalCategory)
compiling local eKelvinBerGrad_z : (F,F) -> F
Time: 0.02 SEC.
compiling local dKelvinBer : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported kelvinKei : (F,F) -> F
Time: 0.01 SEC.
compiling local eKelvinKei : (F,F) -> F
Time: 0 SEC.
compiling local elKelvinKei : List F -> F
Time: 0 SEC.
****** Domain: F already in scope
augmenting F: (RadicalCategory)
compiling local eKelvinKeiGrad_z : (F,F) -> F
Time: 0.03 SEC.
compiling local dKelvinKei : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported kelvinKer : (F,F) -> F
Time: 0.03 SEC.
compiling local eKelvinKer : (F,F) -> F
Time: 0 SEC.
compiling local elKelvinKer : List F -> F
Time: 0 SEC.
****** Domain: F already in scope
augmenting F: (RadicalCategory)
compiling local eKelvinKerGrad_z : (F,F) -> F
Time: 0.01 SEC.
compiling local dKelvinKer : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported ellipticK : F -> F
Time: 0.01 SEC.
compiling local eEllipticK : F -> F
Time: 0 SEC.
compiling local elEllipticK : List F -> F
Time: 0 SEC.
compiling local dEllipticK : F -> F
Time: 0.02 SEC.
compiling exported ellipticE : F -> F
Time: 0 SEC.
compiling local eEllipticE : F -> F
Time: 0 SEC.
compiling local elEllipticE : List F -> F
Time: 0 SEC.
compiling local dEllipticE : F -> F
Time: 0.01 SEC.
compiling exported ellipticE : (F,F) -> F
Time: 0 SEC.
compiling local eEllipticE2 : (F,F) -> F
Time: 0 SEC.
compiling local elEllipticE2 : List F -> F
Time: 0 SEC.
****** Domain: F already in scope
augmenting F: (RadicalCategory)
compiling local eEllipticE2Grad_z : List F -> F
Time: 0 SEC.
compiling local eEllipticE2Grad_m : List F -> F
Time: 0 SEC.
compiling local inEllipticE2 : List InputForm -> InputForm
Time: 0 SEC.
compiling exported ellipticF : (F,F) -> F
Time: 0 SEC.
compiling local eEllipticF : (F,F) -> F
Time: 0.01 SEC.
compiling local elEllipticF : List F -> F
Time: 0 SEC.
****** Domain: F already in scope
augmenting F: (RadicalCategory)
compiling local eEllipticFGrad_z : List F -> F
Time: 0.02 SEC.
compiling local eEllipticFGrad_m : List F -> F
Time: 0.01 SEC.
compiling exported ellipticPi : (F,F,F) -> F
Time: 0.01 SEC.
compiling local eEllipticPi : (F,F,F) -> F
Time: 0 SEC.
compiling local elEllipticPi : List F -> F
Time: 0 SEC.
****** Domain: F already in scope
augmenting F: (RadicalCategory)
compiling local eEllipticPiGrad_z : List F -> F
Time: 0.13 SEC.
compiling local eEllipticPiGrad_n : List F -> F
Time: 0.24 SEC.
compiling local eEllipticPiGrad_m : List F -> F
Time: 0.02 SEC.
compiling exported jacobiSn : (F,F) -> F
Time: 0 SEC.
compiling local eJacobiSn : (F,F) -> F
Time: 0 SEC.
compiling local elJacobiSn : List F -> F
Time: 0 SEC.
compiling local jacobiGradHelper : (F,F) -> F
Time: 0.01 SEC.
compiling local eJacobiSnGrad_z : List F -> F
Time: 0 SEC.
compiling local eJacobiSnGrad_m : List F -> F
Time: 0.01 SEC.
compiling exported jacobiCn : (F,F) -> F
Time: 0 SEC.
compiling local eJacobiCn : (F,F) -> F
Time: 0 SEC.
compiling local elJacobiCn : List F -> F
Time: 0 SEC.
compiling local eJacobiCnGrad_z : List F -> F
Time: 0 SEC.
compiling local eJacobiCnGrad_m : List F -> F
Time: 0.03 SEC.
compiling exported jacobiDn : (F,F) -> F
Time: 0.01 SEC.
compiling local eJacobiDn : (F,F) -> F
Time: 0 SEC.
compiling local elJacobiDn : List F -> F
Time: 0.01 SEC.
compiling local eJacobiDnGrad_z : List F -> F
Time: 0.01 SEC.
compiling local eJacobiDnGrad_m : List F -> F
Time: 0.03 SEC.
compiling exported jacobiZeta : (F,F) -> F
Time: 0 SEC.
compiling local eJacobiZeta : (F,F) -> F
Time: 0.01 SEC.
compiling local elJacobiZeta : List F -> F
Time: 0 SEC.
compiling local eJacobiZetaGrad_z : List F -> F
Time: 0 SEC.
compiling local eJacobiZetaGrad_m : List F -> F
Time: 0.28 SEC.
compiling exported jacobiTheta : (F,F) -> F
Time: 0 SEC.
compiling local eJacobiTheta : (F,F) -> F
Time: 0.01 SEC.
compiling local elJacobiTheta : List F -> F
Time: 0 SEC.
compiling exported lerchPhi : (F,F,F) -> F
Time: 0 SEC.
compiling local eLerchPhi : (F,F,F) -> F
Time: 0.01 SEC.
compiling local elLerchPhi : List F -> F
Time: 0 SEC.
compiling local dLerchPhi : (List F,Symbol) -> F
Time: 0.13 SEC.
compiling exported riemannZeta : F -> F
Time: 0 SEC.
compiling local eRiemannZeta : F -> F
Time: 0 SEC.
compiling local elRiemannZeta : List F -> F
Time: 0 SEC.
compiling exported charlierC : (F,F,F) -> F
Time: 0 SEC.
compiling local eCharlierC : (F,F,F) -> F
Time: 0.01 SEC.
compiling local elCharlierC : List F -> F
Time: 0 SEC.
compiling exported hermiteH : (F,F) -> F
Time: 0 SEC.
compiling local eHermiteH : (F,F) -> F
Time: 0.01 SEC.
compiling local elHermiteH : List F -> F
Time: 0 SEC.
compiling local eHermiteHGrad_z : (F,F) -> F
Time: 0 SEC.
compiling local dHermiteH : (List F,Symbol) -> F
Time: 0.01 SEC.
compiling exported jacobiP : (F,F,F,F) -> F
Time: 0 SEC.
compiling local eJacobiP : (F,F,F,F) -> F
Time: 0.03 SEC.
compiling local elJacobiP : List F -> F
Time: 0 SEC.
compiling local eJacobiPGrad_z : (F,F,F,F) -> F
Time: 0.02 SEC.
compiling local dJacobiP : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported laguerreL : (F,F,F) -> F
Time: 0 SEC.
compiling local eLaguerreL : (F,F,F) -> F
Time: 0 SEC.
compiling local elLaguerreL : List F -> F
Time: 0.01 SEC.
compiling local eLaguerreLGrad_z : (F,F,F) -> F
Time: 0 SEC.
compiling local dLaguerreL : (List F,Symbol) -> F
Time: 0 SEC.
compiling exported meixnerM : (F,F,F,F) -> F
Time: 0 SEC.
compiling local eMeixnerM : (F,F,F,F) -> F
Time: 0.02 SEC.
compiling local elMeixnerM : List F -> F
Time: 0.01 SEC.
compiling exported belong? : BasicOperator -> Boolean
Time: 0 SEC.
compiling exported operator : BasicOperator -> BasicOperator
Time: 0.03 SEC.
compiling local iGamma : F -> F
Time: 0 SEC.
compiling local iabs : F -> F
augmenting R: (SIGNATURE R abs (R R))
Time: 0.01 SEC.
compiling local iconjugate : F -> F
Time: 0.01 SEC.
compiling local iBeta : (F,F) -> F
Time: 0 SEC.
compiling local idigamma : F -> F
Time: 0 SEC.
compiling local iiipolygamma : (F,F) -> F
Time: 0.01 SEC.
compiling local iiiBesselJ : (F,F) -> F
Time: 0 SEC.
compiling local iiiBesselY : (F,F) -> F
Time: 0.01 SEC.
compiling local iiiBesselI : (F,F) -> F
Time: 0 SEC.
compiling local iiiBesselK : (F,F) -> F
Time: 0.01 SEC.
importing Fraction Integer
****** Domain: F already in scope
augmenting F: (ElementaryFunctionCategory)
compiling exported iAiryAi : F -> F
Time: 0.01 SEC.
compiling exported iAiryAiPrime : F -> F
Time: 0 SEC.
compiling exported iAiryBi : F -> F
Time: 0.01 SEC.
compiling exported iAiryBiPrime : F -> F
Time: 0 SEC.
compiling exported iAiryAi : F -> F
Time: 0 SEC.
compiling exported iAiryAiPrime : F -> F
Time: 0 SEC.
compiling exported iAiryBi : F -> F
Time: 0 SEC.
compiling exported iAiryBiPrime : F -> F
Time: 0 SEC.
****** Domain: F already in scope
augmenting F: (ElementaryFunctionCategory)
compiling exported iLambertW : F -> F
Time: 0 SEC.
compiling exported iLambertW : F -> F
Time: 0 SEC.
****** Domain: F already in scope
augmenting F: (ElementaryFunctionCategory)
****** Domain: F already in scope
augmenting F: (LiouvillianFunctionCategory)
compiling exported iiPolylog : (F,F) -> F
Time: 0.01 SEC.
compiling exported iiPolylog : (F,F) -> F
Time: 0.01 SEC.
compiling exported iiPolylog : (F,F) -> F
Time: 0 SEC.
compiling local iPolylog : List F -> F
Time: 0.01 SEC.
compiling local iWeierstrassP : (F,F,F) -> F
Time: 0 SEC.
compiling local iWeierstrassPPrime : (F,F,F) -> F
Time: 0.01 SEC.
compiling local iWeierstrassSigma : (F,F,F) -> F
Time: 0.01 SEC.
compiling local iWeierstrassZeta : (F,F,F) -> F
Time: 0 SEC.
augmenting R: (SIGNATURE R abs (R R))
importing Polynomial R
compiling exported iiabs : F -> F
Time: 0.02 SEC.
compiling exported iiabs : F -> F
Time: 0 SEC.
compiling exported iiconjugate : F -> F
augmenting R: (SIGNATURE R conjugate (R R))
Time: 0.02 SEC.
****** Domain: R already in scope
augmenting R: (SpecialFunctionCategory)
compiling exported iiGamma : F -> F
Time: 0 SEC.
compiling exported iiBeta : List F -> F
Time: 0 SEC.
compiling exported iidigamma : F -> F
Time: 0 SEC.
compiling exported iipolygamma : List F -> F
Time: 0 SEC.
compiling exported iiBesselJ : List F -> F
Time: 0.01 SEC.
compiling exported iiBesselY : List F -> F
Time: 0 SEC.
compiling exported iiBesselI : List F -> F
Time: 0 SEC.
compiling exported iiBesselK : List F -> F
Time: 0.01 SEC.
compiling exported iiAiryAi : F -> F
Time: 0 SEC.
compiling exported iiAiryAiPrime : F -> F
Time: 0 SEC.
compiling exported iiAiryBi : F -> F
Time: 0.01 SEC.
compiling exported iiAiryBi : F -> F
Time: 0 SEC.
****** Domain: R already in scope
augmenting R: (RetractableTo (Integer))
compiling exported iiGamma : F -> F
Time: 0 SEC.
compiling exported iiGamma : F -> F
Time: 0 SEC.
compiling exported iiBeta : List F -> F
Time: 0 SEC.
compiling exported iidigamma : F -> F
Time: 0 SEC.
compiling exported iipolygamma : List F -> F
Time: 0.01 SEC.
compiling exported iiBesselJ : List F -> F
Time: 0 SEC.
compiling exported iiBesselY : List F -> F
Time: 0 SEC.
compiling exported iiBesselI : List F -> F
Time: 0 SEC.
compiling exported iiBesselK : List F -> F
Time: 0 SEC.
compiling exported iiAiryAi : F -> F
Time: 0 SEC.
compiling exported iiAiryAiPrime : F -> F
Time: 0 SEC.
compiling exported iiAiryBi : F -> F
Time: 0 SEC.
compiling exported iiAiryBiPrime : F -> F
Time: 0 SEC.
compiling local iiWeierstrassP : List F -> F
Time: 0 SEC.
compiling local iiWeierstrassPPrime : List F -> F
Time: 0 SEC.
compiling local iiWeierstrassSigma : List F -> F
Time: 0 SEC.
compiling local iiWeierstrassZeta : List F -> F
Time: 0 SEC.
compiling local diff1 : (BasicOperator,F,F) -> F
Time: 0.10 SEC.
compiling local iBesselJ : (List F,Symbol) -> F
Time: 0.02 SEC.
compiling local iBesselY : (List F,Symbol) -> F
Time: 0.04 SEC.
compiling local iBesselI : (List F,Symbol) -> F
Time: 0.02 SEC.
compiling local iBesselK : (List F,Symbol) -> F
Time: 0.02 SEC.
compiling local dPolylog : (List F,Symbol) -> F
Time: 0.02 SEC.
compiling local ipolygamma : (List F,Symbol) -> F
Time: 0.01 SEC.
compiling local iBetaGrad1 : List F -> F
Time: 0 SEC.
compiling local iBetaGrad2 : List F -> F
Time: 0.01 SEC.
****** Domain: F already in scope
augmenting F: (ElementaryFunctionCategory)
compiling local iGamma2 : (List F,Symbol) -> F
Time: 0.03 SEC.
compiling local inGamma2 : List InputForm -> InputForm
Time: 0.01 SEC.
compiling local dLambertW : F -> F
Time: 0.01 SEC.
compiling local iWeierstrassPGrad1 : List F -> F
Time: 0.45 SEC.
compiling local iWeierstrassPGrad2 : List F -> F
Time: 0.14 SEC.
compiling local iWeierstrassPGrad3 : List F -> F
Time: 0.01 SEC.
compiling local iWeierstrassPPrimeGrad1 : List F -> F
Time: 0.59 SEC.
compiling local iWeierstrassPPrimeGrad2 : List F -> F
Time: 0.22 SEC.
compiling local iWeierstrassPPrimeGrad3 : List F -> F
Time: 0 SEC.
compiling local iWeierstrassSigmaGrad1 : List F -> F
Time: 1.20 SEC.
compiling local iWeierstrassSigmaGrad2 : List F -> F
Time: 0.24 SEC.
compiling local iWeierstrassSigmaGrad3 : List F -> F
Time: 0.01 SEC.
compiling local iWeierstrassZetaGrad1 : List F -> F
Time: 0.19 SEC.
compiling local iWeierstrassZetaGrad2 : List F -> F
Time: 0.14 SEC.
compiling local iWeierstrassZetaGrad3 : List F -> F
Time: 0 SEC.
processing macro definition OF ==> OutputForm
processing macro definition SEX ==> SExpression
processing macro definition NNI ==> NonNegativeInteger
compiling local dconjugate : List OutputForm -> OutputForm
Time: 0 SEC.
****** Domain: F already in scope
augmenting F: (RetractableTo (Integer))
augmenting $: (SIGNATURE $ hypergeometricF (F (List F) (List F) F))
augmenting $: (SIGNATURE $ meijerG (F (List F) (List F) (List F) (List F) F))
compiling local get_int_listf : List F -> List Integer
Time: 0.01 SEC.
compiling local replace_i : (List F,F,NonNegativeInteger) -> List F
Time: 0 SEC.
compiling exported iiHypergeometricF : List F -> F
Time: 0.02 SEC.
compiling local idvsum : (BasicOperator,Integer,List F,Symbol) -> F
Time: 0.04 SEC.
compiling local dvhypergeom : (List F,Symbol) -> F
Time: 0.04 SEC.
compiling local add_pairs_to_list : (List List F,List F) -> List F
Time: 0 SEC.
compiling local dvmeijer : (List F,Symbol) -> F
Time: 0.06 SEC.
compiling local get_if_list : (Integer,List InputForm) -> List List InputForm
Time: 0.01 SEC.
compiling local get_if_lists : (List Integer,List InputForm) -> List List InputForm
Time: 0 SEC.
compiling local get_int_listi : (Integer,List InputForm) -> List Integer
Time: 0.01 SEC.
compiling local get_of_list : (Integer,List OutputForm) -> List List OutputForm
Time: 0.01 SEC.
compiling local get_of_lists : (List Integer,List OutputForm) -> List List OutputForm
Time: 0.01 SEC.
compiling local get_int_listo : (Integer,List OutputForm) -> List Integer
Time: 0.01 SEC.
compiling local dhyper0 : (OutputForm,List OutputForm) -> OutputForm
Time: 0.01 SEC.
compiling local dhyper : List OutputForm -> OutputForm
Time: 0 SEC.
compiling local ddhyper : List OutputForm -> OutputForm
Time: 0 SEC.
compiling local dmeijer0 : (OutputForm,List OutputForm) -> OutputForm
Time: 0.02 SEC.
compiling local dmeijer : List OutputForm -> OutputForm
Time: 0 SEC.
compiling local ddmeijer : List OutputForm -> OutputForm
Time: 0 SEC.
compiling local inhyper : List InputForm -> InputForm
Time: 0.01 SEC.
compiling local inmeijer : List InputForm -> InputForm
Time: 0.01 SEC.
compiling exported iiHypergeometricF : List F -> F
Time: 0 SEC.
compiling local iiMeijerG : List F -> F
Time: 0 SEC.
compiling local d_eis : F -> F
Time: 0.01 SEC.
****** Domain: F already in scope
augmenting F: (TranscendentalFunctionCategory)
****** Domain: F already in scope
augmenting F: (RadicalCategory)
compiling local d_erfs : F -> F
Time: 0.01 SEC.
compiling local d_erfis : F -> F
Time: 0.01 SEC.
****** Domain: F already in scope
augmenting F: (RetractableTo (Integer))
augmenting $: (SIGNATURE $ hypergeometricF (F (List F) (List F) F))
augmenting $: (SIGNATURE $ meijerG (F (List F) (List F) (List F) (List F) F))
(time taken in buildFunctor: 10)
;;; *** |FunctionalSpecialFunction| REDEFINED
;;; *** |FunctionalSpecialFunction| REDEFINED
Time: 0.06 SEC.
Warnings:
[1] iiabs: not known that (Ring) is of mode (CATEGORY R (SIGNATURE abs (R R)))
Cumulative Statistics for Constructor FunctionalSpecialFunction
Time: 5.90 seconds
finalizing NRLIB FSPECX
Processing FunctionalSpecialFunction for Browser database:
--------constructor---------
--------(belong? ((Boolean) (BasicOperator)))---------
--------(operator ((BasicOperator) (BasicOperator)))---------
--------(abs (F F))---------
--------(conjugate (F F))---------
--------(Gamma (F F))---------
--------(Gamma (F F F))---------
--------(Beta (F F F))---------
--------(digamma (F F))---------
--------(polygamma (F F F))---------
--------(besselJ (F F F))---------
--------(besselY (F F F))---------
--------(besselI (F F F))---------
--------(besselK (F F F))---------
--------(airyAi (F F))---------
--------(airyAiPrime (F F))---------
--------(airyBi (F F))---------
--------(airyBiPrime (F F))---------
--------(lambertW (F F))---------
--------(polylog (F F F))---------
--------(weierstrassP (F F F F))---------
--------(weierstrassPPrime (F F F F))---------
--------(weierstrassSigma (F F F F))---------
--------(weierstrassZeta (F F F F))---------
--------(whittakerM (F F F F))---------
--------(whittakerW (F F F F))---------
--------(angerJ (F F F))---------
--------(weberE (F F F))---------
--------(struveH (F F F))---------
--------(struveL (F F F))---------
--------(hankelH1 (F F F))---------
--------(hankelH2 (F F F))---------
--------(lommelS1 (F F F F))---------
--------(lommelS2 (F F F F))---------
--------(kummerM (F F F F))---------
--------(kummerU (F F F F))---------
--------(legendreP (F F F F))---------
--------(legendreQ (F F F F))---------
--------(kelvinBei (F F F))---------
--------(kelvinBer (F F F))---------
--------(kelvinKei (F F F))---------
--------(kelvinKer (F F F))---------
--------(ellipticK (F F))---------
--------(ellipticE (F F))---------
--------(ellipticE (F F F))---------
--------(ellipticF (F F F))---------
--------(ellipticPi (F F F F))---------
--------(jacobiSn (F F F))---------
--------(jacobiCn (F F F))---------
--------(jacobiDn (F F F))---------
--------(jacobiZeta (F F F))---------
--------(jacobiTheta (F F F))---------
--------(lerchPhi (F F F F))---------
--------(riemannZeta (F F))---------
--------(charlierC (F F F F))---------
--------(hermiteH (F F F))---------
--------(jacobiP (F F F F F))---------
--------(laguerreL (F F F F))---------
--------(meixnerM (F F F F F))---------
--------(hypergeometricF (F (List F) (List F) F))---------
--------(meijerG (F (List F) (List F) (List F) (List F) F))---------
--------(iiGamma (F F))---------
--------(iiabs (F F))---------
--------(iiconjugate (F F))---------
--------(iiBeta (F (List F)))---------
--------(iidigamma (F F))---------
--------(iipolygamma (F (List F)))---------
--------(iiBesselJ (F (List F)))---------
--------(iiBesselY (F (List F)))---------
--------(iiBesselI (F (List F)))---------
--------(iiBesselK (F (List F)))---------
--------(iiAiryAi (F F))---------
--------(iiAiryAiPrime (F F))---------
--------(iiAiryBi (F F))---------
--------(iiAiryBiPrime (F F))---------
--------(iAiryAi (F F))---------
--------(iAiryAiPrime (F F))---------
--------(iAiryBi (F F))---------
--------(iAiryBiPrime (F F))---------
--------(iiHypergeometricF (F (List F)))---------
--------(iiPolylog (F F F))---------
--------(iLambertW (F F))---------
; compiling file "/var/aw/var/LatexWiki/FSPECX.NRLIB/FSPECX.lsp" (written 11 SEP 2014 09:33:08 PM):
; /var/aw/var/LatexWiki/FSPECX.NRLIB/FSPECX.fasl written
; compilation finished in 0:00:06.576
------------------------------------------------------------------------
FunctionalSpecialFunction is now explicitly exposed in frame initial
FunctionalSpecialFunction will be automatically loaded when needed
from /var/aw/var/LatexWiki/FSPECX.NRLIB/FSPECX
fricas
differentiate(abs(x),x)
Type: Expression(Integer)
fricas
differentiate(sqrt(x*conjugate(x)),x)
Type: Expression(Integer)
fricas
differentiate(abs(x)^2,x)
Type: Expression(Integer)
fricas
differentiate(conjugate(x),x)
Type: Expression(Integer)
fricas
test(conjugate abs x = abs x)
Type: Boolean
fricas
test(abs conjugate x = abs x)
Type: Boolean
fricas
test(conjugate conjugate x = x)
Type: Boolean
fricas
test(conjugate(a+b)=conjugate(a)+conjugate(b))
Type: Boolean
fricas
test(conjugate(a*b)=conjugate(a)*conjugate(b))
Type: Boolean
fricas
conjugate(_\sigma[_\alpha])
Type: Expression(Integer)
fricas
)set output algebra on
conjugate(x)
_
(11) x
Type: Expression(Integer)
fricas
conjugate(a+%i*b)
_ _
(12) - %ib + a
Type: Expression(Complex(Integer))
fricas
abs(2::Expression Integer)
(13) 2
Type: Expression(Integer)
fricas
abs(3.1415::Expression Float)
(14) 3.1415
Type: Expression(Float)
fricas
abs(-2::Expression Integer)
(15) 2
Type: Expression(Integer)
fricas
abs((1+%i)::Expression Complex Float)
(16) 1.4142135623_730950488
Type: Expression(Complex(Float))
fricas
abs(1$Expression Complex Integer)
(17) 1
Type: Expression(Complex(Integer))
fricas
abs((1+%i)::Expression Complex Integer)
(18) abs(1 + %i)
Type: Expression(Complex(Integer))
fricas
)lib FSPECX
FunctionalSpecialFunction is already explicitly exposed in frame
initial
FunctionalSpecialFunction will be automatically loaded when needed
from /var/aw/var/LatexWiki/FSPECX.NRLIB/FSPECX
On 8 September 2014 15:15, Waldek Hebisch wrote:
Definitions you gave are debatable. In particular
D(conjugate(x), x) = 0
may lead to troubles. For example,
D(conjugate(conjugate(x)), x)
should be equal to D(x, x) = 1
regardless how we compute it. Consider:
fricas
D(conjugate(conjugate(x)), x)
(19) 1
Type: Expression(Integer)
fricas
y := operator 'y
(20) y
fricas
conjugate(y(x))
_
(21) y(x)
Type: Expression(Integer)
fricas
D(conjugate(y(x)), x)
(22) 0
Type: Expression(Integer)
substituting conjugate(x)
for y(x)
and derivative of
conjugate(x)
for derivative of y(x)
should give derivative
of conjugate(conjugate(x))
.
If what I wrote looks like nitpicking let me note that FriCAS?
blindly applies rather complex transformations. For example
during integration internal form is quite different than
user input and final result. Inconsistency in derivative
rule will bring all kinds of nasty bugs.
We probably can leave derivative of conjugate
unevaluated.
But even that needs some thought to make sure there are
no inconsistency. Signaling error would be safe from
correctness point of view, but would significantly limit
usefulness - code handling expressions assumes that it
can freely compute derivatives, so when dealing with
conjugate
we would routinely get errors deep inside
library code.
On On 11 September 2014 07:28, Waldek Hebisch wrote:
You clearly allow non-holomorphic arguments to conjugate, otherwise
conjugate(conjugate(x))
would be illegal. Rather, you assume
that conjugate will be always pushed onto variables/parameters
and that in context of differentiation we will substitute
only holomorphic functions for variables. But in other
context you allow non-holomorphic things. Pushing conjugate
to variables in itself is debatable:
fricas
conjugate(log(-1))
________
(23) log(- 1)
Type: Expression(Integer)
fricas
eval(conjugate(log(x)), x = -1)
(24) log(- 1)
Type: Expression(Integer)
you get different result depending on when exactly we plug in
constant argument to logarithm.
You have:
fricas
conjugate(log(conjugate(x) + x))
_
(25) log(x + x)
Type: Expression(Integer)
but when real part of x is negative we are on the conventional
branch cut of logarithm and some folks may be upset by such
simplification (not that unlike previous example where problem
set was of lower dimension here we have problem on open set).
The reason that I wanted D(conjugate(x), x) = 0 is to have D
correspond to the first Wirtinger derivative that I mentioned in
another email chain. It is not clear to me that this could result in
nasty bugs. Maybe this is possible in the cases where the chain rule
is applied since in that case the conjugate Wirtinger derivative would
be required.
But chain rule is applied automatically when computing derivatives.
Consider:
fricas
D(abs(x + conjugate(x)), x)
_
x + x
(26) -----------
_
2abs(x + x)
Type: Expression(Integer)
complex (Wirtinger) derivative of the above is twice of the above.
Actually, it seems that even leaving derivatives of conjugate
unevaluated we need to be careful. Namely, given
a differential Ring R_0 and any formal operation f we can form
differential ring R_1 where f and all its derivative remain
unevaluated. But we want to have some simplification
so we divide R_1 by appropriate equivalence relation.
For the result to be a differential ring equivalence
classes should be cosets of a differential ideal, in
particular set of elements of R_1 equivalent to 0
should be a differential ideal. So we need to make
sure that simplifications are consistent with
derivative.
I would like to collect some examples of such errors.
With your current code:
fricas
normalize(exp(conjugate(x)+x)+exp(x) + exp(conjugate(x)))
_
>> Error detected within library code:
Hidden constant detected
With derivative of conjugate
changes to error:
fricas
integrate(exp(conjugate(y)*x), x)
There are 5 exposed and 1 unexposed library operations named
conjugate having 1 argument(s) but none was determined to be
applicable. Use HyperDoc Browse, or issue
)display op conjugate
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.
Cannot find a definition or applicable library operation named
conjugate with argument type(s)
BasicOperator
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
fricas
normalize(exp(conjugate(y)*x)+exp(x))
There are 5 exposed and 1 unexposed library operations named
conjugate having 1 argument(s) but none was determined to be
applicable. Use HyperDoc Browse, or issue
)display op conjugate
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.
Cannot find a definition or applicable library operation named
conjugate with argument type(s)
BasicOperator
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
fricas
limit(exp(conjugate(y)*x), x=%plusInfinity)
There are 5 exposed and 1 unexposed library operations named
conjugate having 1 argument(s) but none was determined to be
applicable. Use HyperDoc Browse, or issue
)display op conjugate
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.
Cannot find a definition or applicable library operation named
conjugate with argument type(s)
BasicOperator
Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.
fricas
series(conjugate(x), x=1)
11
(27) 1 + O((x - 1) )
Type: UnivariatePuiseuxSeries
?(Expression(Integer),
x,
1)