|
|
last edited 2 years ago by TheDoctor |
1 2 3 4 5 6 7 8 | ||
Editor: test1
Time: 2017/04/03 17:52:07 GMT+0 |
||
Note: |
changed: - Try FriCAS calculations here. For example, here is a simple FriCAS command:: !\begin{axiom} integrate(1/(a+z^3), z=0..1,"noPole") \end{axiom} \begin{axiom} integrate(1/(a+z^3), z=0..1,"noPole") \end{axiom} Remember to type **!\begin{axiom}** before each group of commands and **\end{axiom}** after the commands. \begin{axiom} integrate(1/sqrt(1+x^2), x) \end{axiom} \begin{axiom} )set output algebra on )set output tex off F1:=integrate(cos(t)*sqrt(cos(2*t)),t) draw(F1,t=-%pi/4..%pi/4) integrate(cos(t)*sqrt(cos(2*t)),t=-%pi/4..%pi/4) \end{axiom} \begin{axiom} integrate(abs(x),x=0..1) integrate(abs(x),x=0..1,"noPole") \end{axiom} \begin{axiom} integrate(abs(x),x=-1..1) integrate(abs(x),x=-1..1,"noPole") \end{axiom} \begin{axiom} integrate(sqrt(x^2),x=0..1) integrate(sqrt(x^2),x=0..1,"noPole") \end{axiom} \begin{axiom} integrate(sqrt(x^2),x=-1..1) integrate(sqrt(x^2),x=-1..1,"noPole") \end{axiom} \begin{axiom} )version \end{axiom} From schweika Mon Dec 31 07:13:59 -0800 2007 From: schweika Date: Mon, 31 Dec 2007 07:13:59 -0800 Subject: Message-ID: <20071231071359-0800@axiom-wiki.newsynthesis.org> \begin{axiom} solve(x*b -3*a*b + a*x - 9*b*b-4*b*x = a*a - 9*a*b ,x) \end{axiom} \begin{axiom} solve(-1*(a+3*b)^2 - 3*b*x -a*x = 0,x) \end{axiom} \begin{axiom} solve(-1*(a+3*b)^2 - 3*b*x +a*x = 0,x) \end{axiom} \begin{axiom} solve(-1*(a-3*b)^2 - 3*b*x +a*x = 0,x) \end{axiom} \begin{axiom} solve((a-3*b)*(x-a+3*b) = 0,x) \end{axiom} From gdr Thu Feb 21 20:30:01 -0800 2008 From: gdr Date: Thu, 21 Feb 2008 20:30:01 -0800 Subject: Coherent type inference Message-ID: <20080221203001-0800@axiom-wiki.newsynthesis.org> \begin{axiom} a : (INT,INT) := (2,3) \end{axiom} \begin{axiom} (1,2) \end{axiom} \begin{axiom} ('Mon,'Tue) \end{axiom} \begin{axiom} a := 'x :: OutputForm b := 'y :: OutputForm a and b \end{axiom} \begin{axiom} )clear all \end{axiom} From artjcoder Tue May 13 02:27:30 -0700 2008 From: artjcoder Date: Tue, 13 May 2008 02:27:30 -0700 Subject: Message-ID: <20080513022730-0700@axiom-wiki.newsynthesis.org> \begin{axiom} y := operator 'y deq := D(y(x), x, 2) + D(y(x), x) + y(x) + cos(y(x)) = 0 solve(deq, y, x) \end{axiom} \begin{axiom} y := operator 'y; deq := D(y(x), x, 2) + D(y(x), x) + y(x) + 1 = 0; solve(deq, y, x); \end{axiom} From gdr Mon May 26 14:22:55 -0700 2008 From: gdr Date: Mon, 26 May 2008 14:22:55 -0700 Subject: exports Message-ID: <20080526142255-0700@axiom-wiki.newsynthesis.org> SandBoxMaybe From FlowProblem Tue Nov 4 21:59:44 -0800 2008 From: FlowProblem Date: Tue, 04 Nov 2008 21:59:44 -0800 Subject: Factor Message-ID: <20081104215944-0800@axiom-wiki.newsynthesis.org> \begin{axiom} factor(1-x^900) \end{axiom} From FlowProblem Tue Nov 4 22:05:49 -0800 2008 From: FlowProblem Date: Tue, 04 Nov 2008 22:05:49 -0800 Subject: Message-ID: <20081104220549-0800@axiom-wiki.newsynthesis.org> \begin{axiom} simplify((a+b+2*sqrt(a)*sqrt(b))/(sqrt(a)+sqrt(b))) \end{axiom} \begin{axiom} simplify ( sin(a)^2+sin(%pi/2-a)^2 ) \end{axiom} \begin{axiom} d:=sin(series(asin(x)))-x 1.2*d \end{axiom} From grinder Wed Nov 26 13:29:45 -0800 2008 From: grinder Date: Wed, 26 Nov 2008 13:29:45 -0800 Subject: quicksort average Message-ID: <20081126132945-0800@axiom-wiki.newsynthesis.org> \begin{axiom} solve( n*log(n)/log(m) = 1/4*n*log(n/4)/log(m) + 3/4*n*log(3/4*n)/log(m) + 15/4*n + 8, m) \end{axiom} \begin{axiom} solve( log(n)/log(m) = 1/4*log(n/4)/log(m) + 3/4*log(3/4*n)/log(m) + 15/4*n + 8, m) \end{axiom} \begin{axiom} solve( log(n)/log(m) = log(n/4)/log(m) + log(3/4*n)/log(m) + 15/4*n + 8, m) \end{axiom} From kylekanos Tue Dec 9 09:55:35 -0800 2008 From: kylekanos Date: Tue, 09 Dec 2008 09:55:35 -0800 Subject: simple integration Message-ID: <20081209095535-0800@axiom-wiki.newsynthesis.org> \begin{axiom} integrate((P*cos(x))/(2*e)*cos(x)*sin(x), x=0..%pi,"noPole") \end{axiom} Bessel Integral \begin{axiom} integrate(exp(z*cos(t)),t=0..2*%pi) \end{axiom} From anonymous Wed Apr 8 23:10:17 -0700 2009 From: anonymous Date: Wed, 08 Apr 2009 23:10:17 -0700 Subject: Message-ID: <20090408231017-0700@axiom-wiki.newsynthesis.org> \begin{axiom} integrate(x/sqrt(x^4+10*x^2-96*x-71),x) \end{axiom} From Ric Fri Apr 10 14:05:50 -0700 2009 From: Ric Date: Fri, 10 Apr 2009 14:05:50 -0700 Subject: Message-ID: <20090410140550-0700@axiom-wiki.newsynthesis.org> \begin{axiom} integrate(1/x, x=1..2) \end{axiom} From Ric Fri Apr 10 14:08:30 -0700 2009 From: Ric Date: Fri, 10 Apr 2009 14:08:30 -0700 Subject: beginner Message-ID: <20090410140830-0700@axiom-wiki.newsynthesis.org> \begin{axiom} integrate(a/x^3, x) \end{axiom} From Tom Tue Jun 2 19:29:03 -0700 2009 From: Tom Date: Tue, 02 Jun 2009 19:29:03 -0700 Subject: sixth Message-ID: <20090602192903-0700@axiom-wiki.newsynthesis.org> \begin{axiom} solve(a^2+b^2=c^2,c) \end{axiom} From PAP Tue Sep 28 17:55:14 -0700 2010 From: PAP Date: Tue, 28 Sep 2010 17:55:14 -0700 Subject: A hard to compute integral Message-ID: <20100928175514-0700@axiom-wiki.newsynthesis.org> \begin{axiom} integrate(1/sqrt(tan(x)), x) a :=simplify(integrate(1/sqrt(tan(x)), x)) b:=simplify(differentiate(a, x)) normalize(b - 1/sqrt(tan(x))) \end{axiom}
Try FriCAS? calculations here. For example, here is a simple FriCAS? command:
\begin{axiom} integrate(1/(a+z^3), z=0..1,"noPole") \end{axiom}
integrate(1/(a+z^3),z=0..1, "noPole")
(1) |
Remember to type \begin{axiom} before each group of commands and \end{axiom} after the commands.
integrate(1/sqrt(1+x^2),x)
(2) |
)set output algebra on
)set output tex off
F1:=integrate(cos(t)*sqrt(cos(2*t)),t)
(3) +-+ 4 +-+ 2 +-+ +------------+ +-+ 32\|2 cos(t) - 48\|2 cos(t) + 17\|2 | 2 - \|2 atan(--------------------------------------) + 8sin(t)\|2cos(t) - 1 +------------+ 2 | 2 (32cos(t) - 24)sin(t)\|2cos(t) - 1 --------------------------------------------------------------------------- 16
draw(F1,t=-%pi/4..%pi/4)
Compiling function %BD with type DoubleFloat -> DoubleFloat Graph data being transmitted to the viewport manager... FriCAS2D data being transmitted to the viewport manager...
(4) TwoDimensionalViewport: "FriCAS2D"
integrate(cos(t)*sqrt(cos(2*t)),t=-%pi/4..%pi/4)
(5) "potentialPole"
integrate(abs(x),x=0..1)
(6) "potentialPole"
integrate(abs(x),x=0..1, "noPole")
(7) "failed"
integrate(abs(x),x=-1..1)
(8) "potentialPole"
integrate(abs(x),x=-1..1, "noPole")
(9) "failed"
integrate(sqrt(x^2),x=0..1)
1 (10) - 2
integrate(sqrt(x^2),x=0..1, "noPole")
1 (11) - 2
integrate(sqrt(x^2),x=-1..1)
(12) "potentialPole"
integrate(sqrt(x^2),x=-1..1, "noPole")
(13) 0
)version
Value = "FriCAS 1.3.1 compiled at Thu Feb 16 03:24:08 UTC 2017"
solve(x*b -3*a*b + a*x - 9*b*b-4*b*x = a*a - 9*a*b ,x)
(14) [x = - 3b + a]
solve(-1*(a+3*b)^2 - 3*b*x -a*x = 0,x)
(15) [x = - 3b - a]
solve(-1*(a+3*b)^2 - 3*b*x +a*x = 0,x)
2 2 - 9b - 6a b - a (16) [x = -----------------] 3b - a
solve(-1*(a-3*b)^2 - 3*b*x +a*x = 0,x)
(17) [x = - 3b + a]
solve((a-3*b)*(x-a+3*b) = 0,x)
(18) [x = - 3b + a]
a : (INT,INT) := (2, 3)
The constructor Tuple takes 1 argument and you have given 2 .
(1,2)
(19) [1,2]
('Mon,'Tue)
(20) [Mon,Tue]
a := 'x :: OutputForm
(21) x
b := 'y :: OutputForm
(22) y
a and b
Argument number 1 to "and" must be a Boolean.
)clear all
All user variables and function definitions have been cleared.
y := operator 'y
(1) y
deq := D(y(x),x, 2) + D(y(x), x) + y(x) + cos(y(x)) = 0
,, , (2) y (x) + y (x) + cos(y(x)) + y(x) = 0
solve(deq,y, x)
>> Error detected within library code: parseLODE: not a linear ordinary differential equation
y := operator 'y;
deq := D(y(x),x, 2) + D(y(x), x) + y(x) + 1 = 0;
solve(deq,y, x);
factor(1-x^900)
(6) - 2 2 2 4 3 2 (x - 1)(x + 1)(x - x + 1)(x + 1)(x + x + 1)(x - x + x - x + 1) * 4 2 4 3 2 6 3 6 3 (x - x + 1)(x + x + x + x + 1)(x - x + 1)(x + x + 1) * 8 7 5 4 3 8 6 4 2 (x - x + x - x + x - x + 1)(x - x + x - x + 1) * 8 7 5 4 3 12 6 (x + x - x - x - x + x + 1)(x - x + 1) * 16 14 10 8 6 2 20 15 10 5 (x + x - x - x - x + x + 1)(x - x + x - x + 1) * 20 15 10 5 24 21 15 12 9 3 (x + x + x + x + 1)(x - x + x - x + x - x + 1) * 24 21 15 12 9 3 (x + x - x - x - x + x + 1) * 40 35 25 20 15 5 40 30 20 10 (x - x + x - x + x - x + 1)(x - x + x - x + 1) * 40 35 25 20 15 5 (x + x - x - x - x + x + 1) * 48 42 30 24 18 6 (x + x - x - x - x + x + 1) * 80 70 50 40 30 10 (x + x - x - x - x + x + 1) * 120 105 75 60 45 15 (x - x + x - x + x - x + 1) * 120 105 75 60 45 15 (x + x - x - x - x + x + 1) * 240 210 150 120 90 30 (x + x - x - x - x + x + 1)
simplify((a+b+2*sqrt(a)*sqrt(b))/(sqrt(a)+sqrt(b)))
+-+ +-+ 2\|a \|b + b + a (7) ----------------- +-+ +-+ \|b + \|a
simplify ( sin(a)^2+sin(%pi/2-a)^2 )
%pi - 2a 2 2 (8) - cos(--------) - cos(a) + 2 2
d:=sin(series(asin(x)))-x
21 (9) O(x )
1.2*d
21 (10) O(x )
solve( n*log(n)/log(m) = 1/4*n*log(n/4)/log(m) + 3/4*n*log(3/4*n)/log(m) + 15/4*n + 8,m)
3n n 4n log(n) - 3n log(--) - n log(-) 4 4 --------------------------------- 15n + 32 (11) [m = %e ]
solve( log(n)/log(m) = 1/4*log(n/4)/log(m) + 3/4*log(3/4*n)/log(m) + 15/4*n + 8,m)
3n n 4log(n) - 3log(--) - log(-) 4 4 --------------------------- 15n + 32 (12) [m = %e ]
solve( log(n)/log(m) = log(n/4)/log(m) + log(3/4*n)/log(m) + 15/4*n + 8,m)
3n n 4log(n) - 4log(--) - 4log(-) 4 4 ---------------------------- 15n + 32 (13) [m = %e ]
integrate((P*cos(x))/(2*e)*cos(x)*sin(x),x=0..%pi, "noPole")
P (14) -- 3e
Bessel Integral
integrate(exp(z*cos(t)),t=0..2*%pi)
(15) "failed"
integrate(x/sqrt(x^4+10*x^2-96*x-71),x)
(16) log +--------------------+ 6 4 3 2 | 4 2 8 (x + 15x - 80x + 27x - 528x + 781)\|x + 10x - 96x - 71 + x + 6 5 4 3 2 20x - 128x + 54x - 1408x + 3124x + 10001 / 8
integrate(1/x,x=1..2)
(17) log(2)
integrate(a/x^3,x)
a (18) - --- 2 2x
solve(a^2+b^2=c^2,c)
2 2 2 (19) [c - b - a = 0]
integrate(1/sqrt(tan(x)),x)
(20) - +-+ 4\|2 * atan 1 ----------------------------------------------------------------- +------------------------------------------+ | +------+ | +-+ |sin(x) |- 2\|2 cos(x) |------ + 2sin(x) + 2cos(x) +------+ | \|cos(x) +-+ |sin(x) |------------------------------------------ + \|2 |------ - 1 \| cos(x) \|cos(x) + - +-+ 4\|2 * 1 atan(---------------------------------------------------------------) +----------------------------------------+ | +------+ | +-+ |sin(x) |2\|2 cos(x) |------ + 2sin(x) + 2cos(x) +------+ | \|cos(x) +-+ |sin(x) |---------------------------------------- + \|2 |------ + 1 \| cos(x) \|cos(x) + +------+ +-+ |sin(x) 2\|2 cos(x) |------ + 2sin(x) + 2cos(x) +-+ \|cos(x) \|2 log(----------------------------------------) cos(x) + +------+ +-+ |sin(x) - 2\|2 cos(x) |------ + 2sin(x) + 2cos(x) +-+ \|cos(x) - \|2 log(------------------------------------------) cos(x) / 4
a :=simplify(integrate(1/sqrt(tan(x)),x))
(21) - +-+ 4\|2 * atan 1 ----------------------------------------------------------------- +------------------------------------------+ | +------+ | +-+ |sin(x) |- 2\|2 cos(x) |------ + 2sin(x) + 2cos(x) +------+ | \|cos(x) +-+ |sin(x) |------------------------------------------ + \|2 |------ - 1 \| cos(x) \|cos(x) + - +-+ 4\|2 * 1 atan(---------------------------------------------------------------) +----------------------------------------+ | +------+ | +-+ |sin(x) |2\|2 cos(x) |------ + 2sin(x) + 2cos(x) +------+ | \|cos(x) +-+ |sin(x) |---------------------------------------- + \|2 |------ + 1 \| cos(x) \|cos(x) + +------+ +-+ |sin(x) 2\|2 cos(x) |------ + 2sin(x) + 2cos(x) +-+ \|cos(x) \|2 log(----------------------------------------) cos(x) + +------+ +-+ |sin(x) - 2\|2 cos(x) |------ + 2sin(x) + 2cos(x) +-+ \|cos(x) - \|2 log(------------------------------------------) cos(x) / 4
b:=simplify(differentiate(a,x))
(22) +------+ 3 4 2 |sin(x) (48cos(x) sin(x) + 39cos(x) - 64cos(x) ) |------ \|cos(x) * +------------------------------------------+ | +------+ | +-+ |sin(x) |- 2\|2 cos(x) |------ + 2sin(x) + 2cos(x) | \|cos(x) |------------------------------------------ \| cos(x) + +------+ 3 4 2 |sin(x) (- 64cos(x) sin(x) - 29cos(x) + 64cos(x) ) |------ \|cos(x) + +-+ 3 +-+ +-+ 4 +-+ 2 (45\|2 cos(x) - 64\|2 cos(x))sin(x) - 32\|2 cos(x) + 32\|2 cos(x) * +----------------------------------------+ | +------+ | +-+ |sin(x) |2\|2 cos(x) |------ + 2sin(x) + 2cos(x) | \|cos(x) |---------------------------------------- \| cos(x) + +------+ 3 4 2 |sin(x) (64cos(x) sin(x) + 29cos(x) - 64cos(x) ) |------ \|cos(x) + +-+ 3 +-+ +-+ 4 +-+ 2 (45\|2 cos(x) - 64\|2 cos(x))sin(x) - 32\|2 cos(x) + 32\|2 cos(x) * +------------------------------------------+ | +------+ | +-+ |sin(x) |- 2\|2 cos(x) |------ + 2sin(x) + 2cos(x) | \|cos(x) |------------------------------------------ \| cos(x) + +------+ 3 4 2 |sin(x) ((14cos(x) - 128cos(x))sin(x) - 47cos(x) + 96cos(x) ) |------ \|cos(x) / 3 4 2 ((39cos(x) - 64cos(x))sin(x) - 48cos(x) + 48cos(x) ) * +------------------------------------------+ | +------+ | +-+ |sin(x) |- 2\|2 cos(x) |------ + 2sin(x) + 2cos(x) | \|cos(x) |------------------------------------------ \| cos(x) + +-+ 3 +-+ +-+ 4 (45\|2 cos(x) - 64\|2 cos(x))sin(x) - 32\|2 cos(x) + +-+ 2 32\|2 cos(x) * +------+ |sin(x) |------ \|cos(x) + 3 4 2 (- 29cos(x) + 64cos(x))sin(x) + 64cos(x) - 64cos(x) * +----------------------------------------+ | +------+ | +-+ |sin(x) |2\|2 cos(x) |------ + 2sin(x) + 2cos(x) | \|cos(x) |---------------------------------------- \| cos(x) + +-+ 3 +-+ +-+ 4 (45\|2 cos(x) - 64\|2 cos(x))sin(x) - 32\|2 cos(x) + +-+ 2 32\|2 cos(x) * +------+ |sin(x) |------ \|cos(x) + 3 4 2 (29cos(x) - 64cos(x))sin(x) - 64cos(x) + 64cos(x) * +------------------------------------------+ | +------+ | +-+ |sin(x) |- 2\|2 cos(x) |------ + 2sin(x) + 2cos(x) | \|cos(x) |------------------------------------------ \| cos(x) + 3 4 2 (- 47cos(x) + 96cos(x))sin(x) - 14cos(x) + 142cos(x) - 128
normalize(b - 1/sqrt(tan(x)))
(23) 0