|
fricas (1) -> <spad>
fricas )abbrev domain FPROD FreeProduct
++ Description:
++ This domain implements the free product of monoids (groups)
++ It is the coproduct in the category of monoids (groups).
++ FreeProduct(A,B) is the monoid (group) whose elements are
++ the reduced words in A and B, under the operation of concatenation
++ followed by reduction:
++ * Remove identity elements (of either A or B)
++ * Replace a1a2 by its product in A and b1b2 by its product in B
++ Ref: http://en.wikipedia.org/wiki/Free_product
FreeProduct(A:Monoid,B:Monoid):Monoid with
if A has Group and B has Group then Group
in1: A -> %
in2: B -> %
RetractableTo(A)
RetractableTo(B)
is1: % -> Boolean
is2: % -> Boolean
factors: % -> List %
if A has Comparable and B has Comparable then Comparable
== add
Rep ==> List Union(A,B)
rep(x:%):Rep == x pretend Rep
per(x:Rep):% == x pretend %
One() == per []
coerce(x:%):OutputForm ==
r:=rep(x)
if empty?(r) then
return coerce(1$InputForm)
else if #r=1 then
s:=first r
if s case A then
return coerce(s::A)
else if s case B then
return overbar(coerce(s::B))
return blankSeparate([coerce(per [s]) for s in r])
if A has Comparable and B has Comparable then
smaller?(x:%,y:%):Boolean ==
r1:=rep(x); r2:=rep(y)
for s1 in r1 for s2 in r2 repeat
if s1 case A then
if s2 case A then
if smaller?(s1::A, s2::A) then return true
if s2 case B then return true
else if s1 case B then
if s2 case B then
if smaller?(s1::B, s2::B) then return true
if s2 case A then return false
if #r1 < #r2 then return true
return false
(x:% = y:%):Boolean ==
r1:=rep(x); r2:=rep(y)
if #r1 ~= #r2 then return false
for s1 in r1 for s2 in r2 repeat
if s1 case A then
if s2 case A then
if (s1::A) ~= (s2::A) then return false
if s2 case B then return false
else if s1 case B then
if s2 case B then
if (s1::B) ~= (s2::B) then return false
if s2 case A then return false
return true
in1(x:A):% == if x=1 then 1 else per [[x]]
in2(y:B):% == if y=1 then 1 else per [[y]]
coerce(x:A):% == in1(x)
coerce(x:B):% == in2(x)
is1(x:%):Boolean == first(rep x) case A
is2(x:%):Boolean == first(rep x) case B
retract(x:%):A == if x=1 or not is1(x) then 1 else coerce(first rep x)@A
retract(x:%):B == if x=1 or not is2(x) then 1 else coerce(first rep x)@B
factors(x:%):List % == [per [s] for s in rep(x)]
if A has Group and B has Group then
inv(x:%):% ==
if x=1 then return 1
return per [( _
s case A => inv(s::A); _
s case B => inv(s::B)) _
for s in reverse rep(x)]
(x:% * y:%):% ==
if x=1 then return y
if y=1 then return x
r1:=rep(x); r2:=rep(y)
f1:=first(r1,(#r1-1)::NonNegativeInteger); l1:=last r1
f2:=first r2; l2:=last(r2,(#r2-1)::NonNegativeInteger)
-- reduction
if l1 case A and f2 case A then
return per(f1)*in1((l1::A)*(f2::A))*per(l2)
if l1 case B and f2 case B then
return per(f1)*in2((l1::B)*(f2::B))*per(l2)
return per concat(r1,r2)
(x:% ^ n:NonNegativeInteger):% ==
if x=1 then return 1
if n>0 then return x*x^(n-1)::NonNegativeInteger
return 1
(x:% ^ n:PositiveInteger):% ==
if x=1 then return 1
if n>1 then return x*x^((n-1)::PositiveInteger)
return x</spad>
fricas Compiling FriCAS source code from file
/var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/1109760127526461248-25px001.spad
using old system compiler.
FPROD abbreviates domain FreeProduct
------------------------------------------------------------------------
initializing NRLIB FPROD for FreeProduct
compiling into NRLIB FPROD
processing macro definition Rep ==> List Union(A,B)
compiling local rep : % -> List Union(A,B)
FPROD;rep is replaced by x
Time: 0 SEC.
compiling local per : List Union(A,B) -> %
FPROD;per is replaced by x
Time: 0 SEC.
compiling exported One : () -> %
Time: 0 SEC.
compiling exported coerce : % -> OutputForm
Time: 0 SEC.
****** Domain: A already in scope
augmenting A: (Comparable)
****** Domain: B already in scope
augmenting B: (Comparable)
compiling exported smaller? : (%,%) -> Boolean
Time: 0 SEC.
compiling exported = : (%,%) -> Boolean
Time: 0 SEC.
compiling exported in1 : A -> %
Time: 0 SEC.
compiling exported in2 : B -> %
Time: 0 SEC.
compiling exported coerce : A -> %
Time: 0 SEC.
compiling exported coerce : B -> %
Time: 0 SEC.
compiling exported is1 : % -> Boolean
Time: 0 SEC.
compiling exported is2 : % -> Boolean
Time: 0 SEC.
compiling exported retract : % -> A
Time: 0 SEC.
compiling exported retract : % -> B
Time: 0 SEC.
compiling exported factors : % -> List %
Time: 0 SEC.
****** Domain: A already in scope
augmenting A: (Group)
****** Domain: B already in scope
augmenting B: (Group)
compiling exported inv : % -> %
Time: 0 SEC.
compiling exported * : (%,%) -> %
Time: 0.02 SEC.
compiling exported ^ : (%,NonNegativeInteger) -> %
Time: 0 SEC.
compiling exported ^ : (%,PositiveInteger) -> %
Time: 0 SEC.
****** Domain: A already in scope
augmenting A: (Comparable)
****** Domain: B already in scope
augmenting B: (Comparable)
****** Domain: A already in scope
augmenting A: (Group)
****** Domain: B already in scope
augmenting B: (Group)
(time taken in buildFunctor: 1238)
;;; *** |FreeProduct| REDEFINED
;;; *** |FreeProduct| REDEFINED
Time: 0 SEC.
Cumulative Statistics for Constructor FreeProduct
Time: 0.05 seconds
finalizing NRLIB FPROD
Processing FreeProduct for Browser database:
--------constructor---------
--->-->FreeProduct((in1 (% A))): Not documented!!!!
--->-->FreeProduct((in2 (% B))): Not documented!!!!
--->-->FreeProduct((is1 ((Boolean) %))): Not documented!!!!
--->-->FreeProduct((is2 ((Boolean) %))): Not documented!!!!
--->-->FreeProduct((factors ((List %) %))): Not documented!!!!
; compiling file "/var/aw/var/LatexWiki/FPROD.NRLIB/FPROD.lsp" (written 01 JUL 2024 12:39:30 AM):
; wrote /var/aw/var/LatexWiki/FPROD.NRLIB/FPROD.fasl
; compilation finished in 0:00:00.056
------------------------------------------------------------------------
FreeProduct is now explicitly exposed in frame initial
FreeProduct will be automatically loaded when needed from
/var/aw/var/LatexWiki/FPROD.NRLIB/FPROD
fricas II:=FPROD(INT,INT)
Type: Type
fricas i1:=in1(2)$II
Type: FreeProduct ?(Integer, Integer)
fricas i2:=in2(3)$II
Type: FreeProduct ?(Integer, Integer)
fricas i1
Type: FreeProduct ?(Integer, Integer)
fricas i2
Type: FreeProduct ?(Integer, Integer)
fricas i1=i2
Type: Equation(FreeProduct ?(Integer, Integer))
fricas test(i1=i2)
Type: Boolean
fricas test(i2=i2)
Type: Boolean
fricas i1*i1
Type: FreeProduct ?(Integer, Integer)
fricas i2*i2
Type: FreeProduct ?(Integer, Integer)
fricas i1*i2
Type: FreeProduct ?(Integer, Integer)
fricas i2*i1
Type: FreeProduct ?(Integer, Integer)
fricas f:=FreeProduct(FreeMonoid Symbol,FreeMonoid Symbol)
Type: Type
fricas p:=in1('p)$f
fricas q:=in2('q)$f
fricas r:=in1('r)$f
fricas (p*q*r)^2
fricas (p*q)*(r*p)*(q*r)
fricas a:FreeMonoid Symbol:='a
fricas b:FreeMonoid Symbol:='b
fricas a*b
fricas p*q
fricas p*q^2
fricas g:=MonoidRing(Integer,f)
Type: Type
fricas m:=(in1('m)$f)::g
fricas n:=(in2('n)$f)::g
fricas nm:=m*n-n*m
fricas nm^2
fricas g:=FreeProduct(FreeGroup Symbol,FreeGroup Symbol)
Type: Type
fricas g1:=(in1('g1)$g)
Type: FreeProduct ?(FreeGroup ?(Symbol), FreeGroup ?(Symbol))
fricas g2:=(in2('g2)$g)
Type: FreeProduct ?(FreeGroup ?(Symbol), FreeGroup ?(Symbol))
fricas g1*g2*g1^(-1)
Type: FreeProduct ?(FreeGroup ?(Symbol), FreeGroup ?(Symbol))
fricas h:=MonoidRing(Integer,g)
Type: Type
fricas h1:=g1::h
Type: MonoidRing ?(Integer, FreeProduct ?(FreeGroup ?(Symbol), FreeGroup ?(Symbol)))
fricas h2:=g2::h
Type: MonoidRing ?(Integer, FreeProduct ?(FreeGroup ?(Symbol), FreeGroup ?(Symbol)))
fricas hh:=h2*h1-h1*h2
Type: MonoidRing ?(Integer, FreeProduct ?(FreeGroup ?(Symbol), FreeGroup ?(Symbol)))
fricas hh^2
Type: MonoidRing ?(Integer, FreeProduct ?(FreeGroup ?(Symbol), FreeGroup ?(Symbol)))
fricas recip(h1)*recip(h2)
Type: MonoidRing ?(Integer, FreeProduct ?(FreeGroup ?(Symbol), FreeGroup ?(Symbol)))
fricas h1*recip(h1)
Type: MonoidRing ?(Integer, FreeProduct ?(FreeGroup ?(Symbol), FreeGroup ?(Symbol)))
fricas h1*h2
Type: MonoidRing ?(Integer, FreeProduct ?(FreeGroup ?(Symbol), FreeGroup ?(Symbol)))
fricas recip(h1*h2)
Type: Union(MonoidRing ?(Integer, FreeProduct ?(FreeGroup ?(Symbol), FreeGroup ?(Symbol))), ...)
fricas h1*h2*recip(h1*h2)
Type: MonoidRing ?(Integer, FreeProduct ?(FreeGroup ?(Symbol), FreeGroup ?(Symbol)))
SandBoxFreeSum
|