|
|
last edited 11 years ago by Mark Clements |
1 2 3 4 5 6 7 8 9 10 11 | ||
Editor: Mark Clements
Time: 2009/03/19 07:54:31 GMT-7 |
||
Note: Addition of the Reduce code |
changed: -How useful are the different CAS languages for implementing numerical routines? Prompted by a comparison of R and C for implementing Fisher's exact test for 2x2 tables (http://fluff.info/blog/arch/00000172.htm), I thought that it would be interesting to implement this particular test in Spad, Boot and Common Lisp (see below). Each set of code was required to implement a univariate root finder and the hypergeometric distribution to calculate the p-value under different alternatives, together with the 95% confidence interval and the maximum likelihood estimator for the odds ratio. The reference implementation is R, where the code and output would be: How useful are the different CAS languages for implementing numerical routines? Prompted by a comparison of R and C for implementing Fisher's exact test for 2x2 tables (http://fluff.info/blog/arch/00000172.htm), I thought that it would be interesting to implement this particular test in Spad, Boot, Reduce and Common Lisp (see below). Each set of code was required to implement a univariate root finder and the hypergeometric distribution to calculate the p-value under different alternatives, together with the 95% confidence interval and the maximum likelihood estimator for the odds ratio. The reference implementation is R, where the code and output would be: changed: -To summarise, all three languages (Spad, Boot and Common Lisp) provide arbitrary length integers and fractions, ensuring that the hypergeometric distribution was straightforward to implement. The Lisp and R implementations were very similar, which is not surprising, given that the two languages are closely related. In contrast, the nested functions in Spad seemed clunky, with the requirement to use the #1 and #2 argument references, although I did appreciate Spad's lexical scoping and facility to fall back to an algebraic analysis. An Aldor implementation would be cleaner than the Spad implementation. Boot's implementation was initially difficult, as I was unclear how to pass values to the nested functions with using function argument (which was not possible for the univariate root finder :-(). The use of the "$" prefix on derived variables seemed clunky - and I was surprised to find that function arguments were lexically scoped. Finally, my version of Fricas:Boot defaulted to single precision floats, which caused problems with precision. Type specification in OpenAxiom:Boot and more recent versions of Fricas would negate the need for explicit coercion to double-floats. - -This begs the question: when would one use any of these languages for mixed numerical/algebraic analysis? First, Boot is the least likely to be used, although it does play closely and well with Common Lisp (a la Maxima). One could code for numerical analysis in Boot and Common Lisp - however Boot's lack of lexical scoping may be a detraction. Moreover, by my understanding, Lisp or Boot are unable to evaluate Spad or Axiom functions. Second, for an R user, Spad's type system seems fussy and debugging can be slow. The lack of ability to call Spad functions from Lisp or Boot is a major restriction, requiring that a large body of code in Lisp (or Fortran via f2cl), such as for optimisation, would need to be hand translated to Spad (see [SandBoxMLE] for an example). As a final note, Maxima would seem to address many of these concerns - although it lacks an elegant type system and I haven't learnt to appreciate its scoping rules :-). As a caveat: I have little experience with these programs. Any changes or improvements to the programs would be welcomed. To summarise, all four languages (Spad, Boot, Reduce and Common Lisp) provide arbitrary length integers and fractions, ensuring that the hypergeometric distribution was straightforward to implement. The Lisp and R implementations were very similar, which is not surprising, given that the two languages are closely related. In contrast, the nested functions in Spad seemed clunky, with the requirement to use the #1 and #2 argument references, although I did appreciate Spad's lexical scoping and facility to fall back to an symbolic analysis. An Aldor implementation would be cleaner than the Spad implementation. Boot's implementation was initially difficult, as I was unclear how to pass values to the nested functions with using function argument (which was not possible for the univariate root finder :-(). The use of the "$" prefix on derived variables seemed clunky - and I was surprised to find that function arguments were lexically scoped. Finally, my version of Fricas:Boot defaulted to single precision floats, which caused problems with precision. Type specification in OpenAxiom:Boot and more recent versions of Fricas would negate the need for explicit coercion to double-floats. For Reduce, the lack of nested procedures in the algebraic mode made progress slow; importantly, the switch to symbolic mode made the implementation quite straightforward, with reasonably good debugging. This begs the question: when would one use any of these languages for mixed numerical/symbolic analysis? In my opinion, Boot is the least likely to be used, although it does play closely and well with Common Lisp (a la Reduce and Maxima). One could code for numerical analysis in Boot and Common Lisp - however Boot's lack of lexical scoping may be a detraction. Moreover, by my understanding, Lisp or Boot are unable to evaluate Spad or Axiom functions. Second, for an R user, Spad's type system seems fussy and debugging can be slow. The lack of ability to call Spad functions from Lisp or Boot is a major restriction, requiring that a large body of code in Lisp (or Fortran via f2cl), such as for optimisation, would need to be hand translated to Spad (see [SandBoxMLE] for an example). Reduce provided a fairly polished environment worthy of further consideration. As a final note, Maxima would seem to address many of these needs - although it lacks an elegant type system and I haven't learnt to appreciate its scoping rules :-). added: For Reduce (which was also my first Reduce program) [NB: formatting has been lost in the output]: \begin{reduce} symbolic; on rounded; symbolic procedure msign(x, y); (abs x) * (if y>0.0 then 1.0 else if y<0.0 then -1.0 else 0.0); %% Numerical root finding using Ridders method %% (Exit criteria hacked: how can one return from a repeat .. until statement?) symbolic procedure ridders(func, x1, x2); begin scalar eps, maxit, fl, fh, xl, xh, ans, xnew, iterNum, fnew; eps:= 1.0e-12; maxit:= 100; fl := funcall(func, x1); fh := funcall(func, x2); xl := x1; xh := x2; ans := -1.0e30; xnew := 0.0e0; iterNum := 0; if (fl*fh) > 0.0 then rederr "Initial points are not either side of zero."; if fl=0.0 then x1 else if fh=0.0 then x2 %if (fl*fh) < 0.0 then else repeat begin scalar xm, fm, ss; xm:= 0.5*(xl+xh); fm:= funcall(func, xm); ss:= sqrt((fm*fm) - (fl*fh)); %if ss =0.0 then return ans; xnew:= xm + (((xm - xl) * (if (fl>fh) then 1.0 else -1.0) * fm) / ss); %if abs(xnew-ans) <= eps then return ans; ans:= xnew; fnew:= funcall(func, ans); %write(fnew); %if fnew=0.0 then return ans; if msign(fm,fnew) neq fm then begin; xl:= xm; fl:= fm; xh:= ans; fh:= fnew; end else if msign(fl, fnew) neq fl then begin; xh:= ans; fh:= fnew; end else if msign(fh, fnew) neq fh then begin; xl:= ans; fl:= fnew; end; iterNum:=iterNum+1; if iterNum >=maxit then rederr "Maximum iterations exceeded"; %if verbose then write xl, xh, fl, fh; end until abs(fnew)<eps or abs(xh-xl) <= eps; return ans end; symbolic procedure choose(n, x); begin scalar total, denom; total := 1.0; for denom:=1:x do << total:=total/denom*(n-denom+1) >>; return total end; symbolic procedure dhyper(x, m, n, k); choose(m, x) * choose(n, k - x) / choose(m + n, k); procedure phyper(x, m, n, k, lowerTail); if lowerTail then for i:=1:x sum dhyper(i, m, n, k) else for i:=(x+1):k sum dhyper(i, m, n, k); symbolic procedure testTolerance(x, y, atol); if abs(x-y) <= atol then t else nil; symbolic procedure test1(); testTolerance(2*ridders(function(cos),0,2), cdr reval(algebraic pi),1e-8); symbolic procedure test2(); testTolerance(choose(100, 5), 75287520, 0); symbolic procedure test3(); testTolerance(dhyper(5, 10, 7, 8), 0.3628137, 1.0e-7); symbolic procedure test4(); testTolerance(log(dhyper(5, 10, 7, 8)),-1.013866, 1.0e-7); symbolic procedure test5(); testTolerance(phyper(5, 10, 7, 8, t),0.7821884, 1.0e-7); symbolic procedure test6(); testTolerance(phyper(5, 10, 7, 8, nil),0.2178116, 1.0e-7); symbolic procedure testSet1(); {test1(), test2(), test3(), test4(), test5(), test6()}; testSet1(); %% symbolic procedure fisherTest(a,b,c,d,alternative,oddsratio,confLevel); begin scalar m, n, k, x00, lo, hi, doubleEps, dnhyper,mnhyper,pnhyper,mle,ncpu,ncpl, support,d2,logdc,alpha, pvalue,cinterval; m := a+c; % first column n := b+d; % second column k := a+b; % first row x00 := a; lo := max(0, k-n); hi := min(k, m); support := for i:=lo:hi collect i; logdc := for each i in support collect log(dhyper(i, m, n, k)); doubleEps := 1.0e-10; dnhyper := function(lambda ncp; begin scalar maxd, sumd2, d, d2; d := for i:=1:length(logdc) collect nth(logdc,i)+log(ncp)*nth(support,i); maxd := apply(function(max),d); d2 :=for each di in d collect exp(di-maxd); sumd2 := for each i in d2 sum i; return for each d2i in d2 collect d2i/sumd2 end); mnhyper := function(lambda ncp; begin scalar d, value; value := if ncp=0.0 then lo %else if ncp equal 'plusInfinity then hi else begin; d := funcall(dnhyper,ncp); return for i:=1:length(d) sum nth(support,i)*nth(d,i) end; return value end); pnhyper := function(lambda(q,ncp,upperTail); if ncp=1.0 then (if upperTail then phyper(q-1, m, n, k, nil) else phyper(q, m, n, k, t)) else if ncp=0.0 then (if upperTail then (if q<=lo then 1.0 else 0.0) else (if q>=lo then 1.0 else 0.0)) else if ncp equal 'plusInfinity then (if upperTail then (if q<=hi then 1.0 else 0.0) else (if q>= hi then 1.0 else 0.0)) else begin scalar d, value; d := funcall(dnhyper,ncp); value := if upperTail then for i:=1:length(d) sum (if nth(support,i)>=q then nth(d,i) else 0) else for i:=1:length(d) sum (if nth(support,i)<=q then nth(d,i) else 0); return value end); ncpL := function(lambda alpha; if x00=lo then 0 else begin scalar p,value,f1,f2; f1 := function(lambda y; funcall(pnhyper,x00,y,t) - alpha); f2 := function(lambda y; funcall(pnhyper,x00,1/y,t) - alpha); p := funcall(pnhyper,x00, 1.0, t); value := if p>alpha then ridders(f1, doubleEps, 1) % zero bound caused problems else if p<alpha then 1/ridders(f2, doubleEps, 1) else 1; return value; end); ncpU := function(lambda alpha; if x00=hi then 'plusInfinity else begin scalar p,value,f1,f2; f1 := function(lambda y; funcall(pnhyper,x00,y,nil) - alpha); f2 := function(lambda y; funcall(pnhyper,x00,1/y,nil) - alpha); p := funcall(pnhyper,x00, 1.0, nil); value := if p<alpha then ridders(f1, 0, 1) else if p>alpha then 1/ridders(f2, doubleEps, 1) else 1; return value; end); pvalue := if alternative equal 'less then funcall(pnhyper,x00,oddsratio,nil) else if alternative equal 'greater then funcall(pnhyper,x00,oddsratio,t) else if alternative equal 'twosided then begin scalar relerr,dstar,dn; relErr:= 1+1.0e-7; dn:= funcall(dnhyper,oddsratio); dstar:= nth(dn,x00-lo+1)*relErr; return for each di in dn sum (if di<dstar then di else 0) end else -1; cInterval := if alternative equal 'less then {0.0, funcall(ncpU,1-confLevel)} else if alternative equal 'greater then {funcall(ncpL,1-confLevel), 'plusInfinity} else if alternative equal 'twosided then {funcall(ncpL,(1-confLevel)/2), funcall(ncpU,(1-confLevel)/2)} else {-1,-1}; % no match mle := if x00=lo then 0.0 else if x00=hi then 'plusInfinity else begin scalar mu, value, f1, f2; f1 := function(lambda y; funcall(mnhyper,y) - x00); f2 := function(lambda y; funcall(mnhyper,1/y) - x00); mu := funcall(mnhyper,1.0); value := if mu>x00 then ridders(f1,0,1) else if mu<x00 then 1/ridders(f2,doubleEps,1.0) else 1.0; return value; end; return {pvalue,cinterval,mle}; end; fishertest(10,10,10,20,'twosided,1,0.95); fishertest(10,10,10,20,'less,1,0.95); fishertest(10,10,10,20,'greater,1,0.95); symbolic procedure testSet2; begin scalar fit1; fit1 := fishertest(10,10,10,20,'twosided,1,0.95); return {testTolerance(first(fit1), 0.2575, 1.0e-3), testTolerance(caadr(fit1),0.5383996, 1.0e-6), testTolerance(cadadr(fit1),7.4363242, 1.0e-4), testTolerance(third(fit1),1.971640, 1.0e-4)} end; testSet2(); \end{reduce}
How useful are the different CAS languages for implementing numerical routines? Prompted by a comparison of R and C for implementing Fisher's exact test for 2x2 tables (http://fluff.info/blog/arch/00000172.htm), I thought that it would be interesting to implement this particular test in Spad, Boot, Reduce and Common Lisp (see below). Each set of code was required to implement a univariate root finder and the hypergeometric distribution to calculate the p-value under different alternatives, together with the 95% confidence interval and the maximum likelihood estimator for the odds ratio. The reference implementation is R, where the code and output would be:
As a caveat: I have little experience with these programs. Any changes or improvements to the programs would be welcomed.
To summarise, all four languages (Spad, Boot, Reduce and Common Lisp) provide arbitrary length integers and fractions, ensuring that the hypergeometric distribution was straightforward to implement. The Lisp and R implementations were very similar, which is not surprising, given that the two languages are closely related. In contrast, the nested functions in Spad seemed clunky, with the requirement to use the #1 and #2 argument references, although I did appreciate Spad's lexical scoping and facility to fall back to an symbolic analysis. An Aldor implementation would be cleaner than the Spad implementation. Boot's implementation was initially difficult, as I was unclear how to pass values to the nested functions with using function argument (which was not possible for the univariate root finder :-(). The use of the "$" prefix on derived variables seemed clunky - and I was surprised to find that function arguments were lexically scoped. Finally, my version of Fricas:Boot defaulted to single precision floats, which caused problems with precision. Type specification in OpenAxiom:Boot and more recent versions of Fricas would negate the need for explicit coercion to double-floats. For Reduce, the lack of nested procedures in the algebraic mode made progress slow; importantly, the switch to symbolic mode made the implementation quite straightforward, with reasonably good debugging.
This begs the question: when would one use any of these languages for mixed numerical/symbolic analysis? In my opinion, Boot is the least likely to be used, although it does play closely and well with Common Lisp (a la Reduce and Maxima). One could code for numerical analysis in Boot and Common Lisp - however Boot's lack of lexical scoping may be a detraction. Moreover, by my understanding, Lisp or Boot are unable to evaluate Spad or Axiom functions. Second, for an R user, Spad's type system seems fussy and debugging can be slow. The lack of ability to call Spad functions from Lisp or Boot is a major restriction, requiring that a large body of code in Lisp (or Fortran via f2cl), such as for optimisation, would need to be hand translated to Spad (see [SandBoxMLE]? for an example). Reduce provided a fairly polished environment worthy of further consideration. As a final note, Maxima would seem to address many of these needs - although it lacks an elegant type system and I haven't learnt to appreciate its scoping rules :-).
)abbrev package TESTP TestPackage R ==> Float I ==> Integer fisherRec ==> Record(PValue:R, CI:List R, Estimate:R) TestPackage: with ridder: (R->R,R,R) -> R msign: (R,R) -> R choose:(I, I)->Fraction I --chooseNew:(Integer, Integer)->Fraction Integer dhyper:(I, I, I, I)->Fraction Integer phyper:(I, I, I, I, Boolean)->Fraction Integer fisherTest:(I,I,I,I, String, R, Boolean, R)-> fisherRec testTolerance:(R, R, R)->Boolean test1: () -> Boolean test2: () -> Boolean test3: () -> Boolean test4: () -> Boolean test5: () -> Boolean test6: () -> Boolean test7: () -> Boolean test8: () -> Boolean test9: () -> Boolean test10: () -> Boolean alltests: () -> List Boolean == add import TrigonometricFunctionCategory -- for test1() --import OrderedCompletion(Float) for plusInfinity()$OrderedCompletion(Float) ridder(func, x1, x2) == eps:= 1.0e-16::R maxit:= 30::Integer --verbose:= false fl:R := func x1 fh:R := func x2 xl:R := x1 xh:R := x2 ans:R := -1.11e30::R xnew:R := 0.0e0::R iterNum:= 0::Integer if fl=0.0::R then return x1 else if fh=0.0::R then return x2 else if (fl*fh) > 0.0::R then error "Initial points are not either side of zero." --if (fl*fh) < 0.0 then else repeat xm:= 0.5::R *(xl+xh) fm:= func xm ss:= sqrt((fm*fm) - (fl*fh)) if ss =0.0::R then return ans xnew:= xm + (((xm - xl) * (if (fl>fh) then 1.0::R else -1.0::R) * fm) / ss) if abs(xnew-ans) <= eps then return ans ans:= xnew fnew:= func ans if fnew=0.0::R then return ans if msign(fm,fnew) ~= fm then xl:= xm fl:= fm xh:= ans fh:= fnew else if msign(fl, fnew) ~= fl then xh:= ans fh:= fnew else if msign(fh, fnew) ~= fh then xl:= ans fl:= fnew iterNum:=iterNum+1::Integer if iterNum >=maxit then error "Maximum iterations exceeded" --if verbose then FORMAT(true,"~,8f ~,8f ~,8f ~,8f~%", xl, xh, fl, fh)$Lisp if abs(xh-xl) <= eps then return ans msign(x, y) == (abs x) * (if y>0.0::R then 1.0::R else if y<0.0::R then -1.0::R else 0.0::R) choose(n, x) == total:Fraction Integer := 1/1 for denom in 1..x repeat total:=total*((n-denom+1)/(denom))::Fraction Integer return total --chooseNew(n, x) == product((n-i+1)::Fraction Integer/i::Fraction Integer,i=1..x) dhyper(x, m, n, k) == choose(m, x) * choose(n, k - x) / choose(m + n, k) phyper(x, m, n, k, lowerTail) == i:PositiveInteger --total:Fraction Integer:=0/1 if lowerTail then reduce("+",[dhyper(i, m, n, k) for i in 1..x]) else reduce("+",[dhyper(i, m, n, k) for i in (x+1)..k]) fisherTest(a,b,c,d, alternative, OR, confInt, confLevel) == m:I := a+c -- first column n:I := b+d -- second column k:I := a+b -- first row x00:I := a lo:I := max(0, k-n) hi:I := min(k, m) support:List I := [i for i in lo..hi] logdc:List R:= [log(dhyper(i, m, n, k)::R) for i in support] doubleEps:R := 1.0e-50::R plusInfinity:R := 1.0e6::R -- arbitrary dnhyper:(R->List R) := ncp:R := #1 d:List R := [logdc(i)+log(ncp)*support(i)::R for i in 1..#logdc] maxd:R := reduce(max,d) d2:List R :=[exp(di-maxd) for di in d] sumd2:R := reduce("+",d2) [d2i/sumd2 for d2i in d2] mnhyper:(R->R) := ncp:R := #1 if ncp=0.0::R then lo::R --else if ncp=%plusInfinity then hi::R else d:List R := dnhyper(ncp) reduce("+",[support(i)::R*d(i) for i in 1..#d]) pnhyper:((Integer,R,Boolean)->R) := q:I := #1 ncp:R := #2 upperTail:Boolean := #3 if ncp=1.0 then if upperTail then phyper(q-1, m, n, k, false)::R else phyper(q, m, n, k, true)::R else if ncp=0.0 then if upperTail then if q<=lo then 1.0::R else 0.0::R else if q>=lo then 1.0::R else 0.0::R -- else if ncp=%plusInfinity then -- if upperTail then -- if q<=hi then 1.0::R else 0.0::R -- else if q>= hi then 1.0::R else 0.0::R else d:List R := dnhyper(ncp) if upperTail then reduce("+",[d(i) for i in 1..#d | support(i)>=q]) else reduce("+",[d(i) for i in 1..#d | support(i)<=q]) mle:(I->R) := x:I := #1 if x=lo then 0.0::R else if x=hi then plusInfinity else mu:R := mnhyper(1.0::R) if mu>x::R then f:(R->R) := mnhyper(#1) - x::R ridder(f,0,1) else if mu<x::R then f:(R->R) := mnhyper(1/#1) - x::R 1/ridder(f,doubleEps,1.0::R) else 1.0::R ncpU:(I,R)->R := x:I := #1 alpha:R := #2 if x=hi then plusInfinity else p:R := pnhyper(x, 1.0::R, false) if p<alpha then f:(R->R) := pnhyper(x,#1,false) - alpha ridder(f, 0.0::R, 1.0::R) else if p>alpha then f:(R->R) := pnhyper(x,1/#1,false) - alpha 1/ridder(f, doubleEps, 1.0::R) else 1.0::R ncpL:(Integer, R)->R := x:I := #1 alpha:R := #2 if x=lo then 0.0::R else p:R := pnhyper(x, 1, true) if p>alpha then f:(R->R) := pnhyper(x,#1,true) - alpha ridder(f, 0,1) else if p<alpha then f:(R->R) := pnhyper(x,1/#1,true) - alpha 1/ridder(f, doubleEps,1.0::R) else 1.0::R pValue:R := if alternative="less" then pnhyper(x00, OR,false) else if alternative="greater" then pnhyper(x00, OR,true) else if alternative="two-sided" then relErr:= 1+1.0e-7::R dn:= dnhyper(OR) dstar:= dn(x00-lo+1)*relErr reduce("+",[di for di in dn | di<dstar]) else -1.0::R cInterval:List R := if confInt then if alternative="less" then [0.0::R, ncpU(x00, 1.0::R-confLevel)] else if alternative="greater" then [ncpL(x00, 1.0::R-confLevel), plusInfinity] else if alternative="two-sided" then alpha:=(1-confLevel)/2 [ncpL(x00, alpha), ncpU(x00, alpha)] else [-1.0::R,-1.0::R] --else [] estimate:= mle(x00) [pValue, cInterval, estimate] testTolerance(x, y, atol) == if abs(x-y) <= atol then true else false test1() == testTolerance(2*ridder(cos,0.0::R,2.0::R),pi()$Pi::R, 1.0e-18) test2() == testTolerance(choose(100, 5)::R, 75287520::R, 0) test3() == testTolerance(dhyper(5, 10, 7, 8)::R, 0.3628137::R, 1.0e-7) test4() == testTolerance(log(dhyper(5, 10, 7, 8)::R),-1.013866::R, 1.0e-7) test5() == testTolerance(phyper(5, 10, 7, 8, true)::R,0.7821884::R, 1.0e-7) test6() == testTolerance(phyper(5, 10, 7, 8, false)::R,0.2178116::R, 1.0e-7) test7() == testTolerance(fisherTest(10,10,10,20,"two-sided",1.0,true,0.95).PValue, 0.2575, 1.0e-3) test8() == testTolerance(fisherTest(10,10,10,20,"two-sided",1.0,true,0.95).CI.1, 0.5383996, 1.0e-6) test9() == testTolerance(fisherTest(10,10,10,20,"two-sided",1.0,true,0.95).CI.2, 7.4363242, 1.0e-4) test10() == testTolerance(fisherTest(10,10,10,20,"two-sided",1.0,true,0.95).Estimate, 1.971640, 1.0e-4) alltests() == [test1(), test2(), test3(), test4(), test5(), test6(), test7(), test8(), test9(), test10()]
Compiling FriCAS source code from file /var/zope2/var/LatexWiki/303933172962875058-25px001.spad using old system compiler. TESTP abbreviates package TestPackage processing macro definition R ==> Float
processing macro definition I ==> Integer
processing macro definition fisherRec ==> Record(PValue: R,CI: List R,Estimate: R)
------------------------------------------------------------------------ initializing NRLIB TESTP for TestPackage compiling into NRLIB TESTP importing TrigonometricFunctionCategory compiling exported ridder : (Float -> Float,Float,Float) -> Float Time: 0.06 SEC.
compiling exported msign : (Float,Float) -> Float Time: 0.03 SEC.
compiling exported choose : (Integer,Integer) -> Fraction Integer Time: 0.04 SEC.
compiling exported dhyper : (Integer,Integer,Integer,Integer) -> Fraction Integer Time: 0 SEC.
compiling exported phyper : (Integer,Integer,Integer,Integer,Boolean) -> Fraction Integer Time: 0.03 SEC.
compiling exported fisherTest : (Integer,Integer,Integer,Integer,String,Float,Boolean,Float) -> Record(PValue: Float,CI: List Float,Estimate: Float) Time: 0.20 SEC.
compiling exported testTolerance : (Float,Float,Float) -> Boolean Time: 0 SEC.
compiling exported test1 : () -> Boolean Time: 0.01 SEC.
compiling exported test2 : () -> Boolean Time: 0.01 SEC.
compiling exported test3 : () -> Boolean Time: 0.01 SEC.
compiling exported test4 : () -> Boolean Time: 0.06 SEC.
compiling exported test5 : () -> Boolean Time: 0.01 SEC.
compiling exported test6 : () -> Boolean Time: 0.01 SEC.
compiling exported test7 : () -> Boolean Time: 0.01 SEC.
compiling exported test8 : () -> Boolean Time: 0.02 SEC.
compiling exported test9 : () -> Boolean Time: 0.02 SEC.
compiling exported test10 : () -> Boolean Time: 0 SEC.
compiling exported alltests : () -> List Boolean Time: 0 SEC.
(time taken in buildFunctor: 0)
;;; *** |TestPackage| REDEFINED
;;; *** |TestPackage| REDEFINED Time: 0 SEC.
Warnings: [1] ridder: xh has no value [2] ridder: xl has no value [3] fisherTest: The conditional modes (List (Float)) and (Integer) conflict
Cumulative Statistics for Constructor TestPackage Time: 0.52 seconds
finalizing NRLIB TESTP Processing TestPackage for Browser database: --->-->TestPackage((ridder (R (Mapping R R) R R))): Not documented!!!! --->-->TestPackage((msign (R R R))): Not documented!!!! --->-->TestPackage((choose ((Fraction I) I I))): Not documented!!!! --->-->TestPackage((dhyper ((Fraction (Integer)) I I I I))): Not documented!!!! --->-->TestPackage((phyper ((Fraction (Integer)) I I I I (Boolean)))): Not documented!!!! --->-->TestPackage((fisherTest (fisherRec I I I I (String) R (Boolean) R))): Not documented!!!! --->-->TestPackage((testTolerance ((Boolean) R R R))): Not documented!!!! --->-->TestPackage((test1 ((Boolean)))): Not documented!!!! --->-->TestPackage((test2 ((Boolean)))): Not documented!!!! --->-->TestPackage((test3 ((Boolean)))): Not documented!!!! --->-->TestPackage((test4 ((Boolean)))): Not documented!!!! --->-->TestPackage((test5 ((Boolean)))): Not documented!!!! --->-->TestPackage((test6 ((Boolean)))): Not documented!!!! --->-->TestPackage((test7 ((Boolean)))): Not documented!!!! --->-->TestPackage((test8 ((Boolean)))): Not documented!!!! --->-->TestPackage((test9 ((Boolean)))): Not documented!!!! --->-->TestPackage((test10 ((Boolean)))): Not documented!!!! --->-->TestPackage((alltests ((List (Boolean))))): Not documented!!!! --->-->TestPackage(constructor): Not documented!!!! --->-->TestPackage(): Missing Description ------------------------------------------------------------------------ TestPackage is now explicitly exposed in frame initial TestPackage will be automatically loaded when needed from /var/zope2/var/LatexWiki/TESTP.NRLIB/code
Using this code in Axiom:
-- test code is correct alltests()
(1) |
-- show the example fisherTest(10,10,10,20,"two-sided",1.0,true,0.95)
(2) |
The Boot translation was more fiddly - but, then again, I had never used Boot before.
doubleFloat(x) == COERCE(x,'DOUBLE_-FLOAT) DF(x) == COERCE(x,'DOUBLE_-FLOAT) ridder(func, x1, x2) == --x2:=DF(x2) eps:= DF(1.0e-16) maxit:= 30 fl := DF(FUNCALL(func,x1)) fh := DF(FUNCALL(func,x2)) xl := x1 xh := x2 ans := DF(-1.11e20) xnew := 0.0e0 iterNum:= 0 if fl=0.0 then return x1 else if fh=0.0 then return x2 else if (fl*fh) > 0.0 then error "Initial points are not either side of zero." --if (fl*fh) < 0.0 then else repeat xm:= 0.5 *(xl+xh) fm:= FUNCALL(func,xm) ss:= SQRT((fm*fm) - (fl*fh)) if ss =0.0 then return ans xnew:= xm + (((xm - xl) * (if (fl>fh) then 1.0 else -1.0) * fm) / ss) if ABS(xnew-ans) <= eps then return ans ans:= xnew fnew:= DF(FUNCALL(func,ans)) if fnew=0.0 then return ans if msign(fm,fnew) ^= fm then xl:= xm fl:= fm xh:= ans fh:= fnew else if msign(fl, fnew) ^= fl then xh:= ans fh:= fnew else if msign(fh, fnew) ^= fh then xl:= ans fl:= fnew iterNum:=iterNum+1 if iterNum >=maxit then error "Maximum iterations exceeded" --if verbose then FORMAT(true,"~,8f ~,8f ~,8f ~,8f~%", xl, xh, fl, fh)$Lisp if ABS(xh-xl) <= eps then return ans msign(x, y) == (ABS x) * (if y>0.0 then 1.0 else if y<0.0 then -1.0 else 0.0) choose(n, x) == total := 1 for denom in 1..x repeat total:=total*(n-denom+1)/denom return total --chooseNew(n, x) == product((n-i+1)::Fraction Integer/i::Fraction Integer,i=1..x) dhyper(x, m, n, k) == DF(choose(m, x) * choose(n, k - x)) / choose(m + n, k) -- reduce(func,list) == -- value := list.0 -- for i in 1..(#list-1) repeat -- value:=FUNCALL(func,value,list.i)) -- value phyper(x, m, n, k, lowerTail) == --total:Fraction Integer:=0/1 if lowerTail then +/[dhyper(i, m, n, k) for i in 1..x] else +/[dhyper(i, m, n, k) for i in (x+1)..k] dnhyper(ncp,logdc,support) == d := [DF(logdc.i+LOG(ncp)*support.i) for i in 0..(#logdc-1)] maxd := APPLY(FUNCTION(MAX),d) d2 :=[EXP(di-maxd) for di in d] sumd2 := +/d2 [d2i/sumd2 for d2i in d2] testTolerance(x, y, atol) == if ABS(x-y) <= atol then true else false test1() == testTolerance(2*ridder('COS,0.0,2.0),3.1415926535897932385, 1.0e-7) test2() == testTolerance(choose(100, 5), 75287520, 0) test3() == testTolerance(dhyper(5, 10, 7, 8), 0.3628137, 1.0e-7) test4() == testTolerance(LOG(dhyper(5, 10, 7, 8)),-1.013866, 1.0e-7) test5() == testTolerance(phyper(5, 10, 7, 8, true),0.7821884, 1.0e-7) test6() == testTolerance(phyper(5, 10, 7, 8, false),0.2178116, 1.0e-7) fisherTest(a,b,c,d, alternative, OR, confInt, confLevel) == main where main() == $m := a+c -- first column $n := b+d -- second column $k := a+b -- first row $x00 := a $lo := MAX(0, $k-$n) $hi := MIN($k, $m) $support := [i for i in $lo..$hi] $logdc := [LOG(dhyper(i, $m, $n, $k)) for i in $support] $doubleEps := 1.0e-10 $plusInfinity := 1.0e10 pvalue := if alternative='"less" then pnhyper($x00, OR,false) else if alternative='"greater" then pnhyper($x00, OR,true) else if alternative='"two-sided" then relErr:= 1+1.0e-7 d:= dnhyper(OR,$logdc,$support) dstar:= ELT(d,$x00-$lo)*relErr +/[di for di in d | di<dstar] else -1.0 -- no match estimate := if $x00=$lo then 0 -- else if $x00=hi then return($plusInfinity) else mu:= mnhyper(1) if mu>$x00 then ridder(FUNCTION(f1),0,1) else if mu<$x00 then 1/ridder(FUNCTION(f2),$doubleEps,1) else 1 interval := if confInt then $alpha := 1 - confLevel if alternative='"less" then [0, ncpU($x00)] else if alternative='"greater" then [ncpL($x00), $plusInfinity] else if alternative='"two-sided" then $alpha :=(1-confLevel)/2.0 [ncpL($x00), ncpU($x00)] else [-1,-1] else [-2,-2] [pvalue,interval,estimate] pnhyper (q,ncp,upperTail) == if ncp=1 then if upperTail then phyper(q-1, $m, $n, $k, false) else phyper(q, $m, $n, $k, true) else if ncp=0 then if upperTail then if q<=$lo then 1 else 0 else if q>=$lo then 1 else 0 -- else if ncp=$plusInfinity then -- if upperTail then -- if q<=hi then return(1) else return(0) -- else if q>= hi then return(1) else return(0) else d:= dnhyper(ncp, $logdc, $support) if upperTail then +/[d.i for i in 0..(#d-1) | $support.i>=q] else +/[d.i for i in 0..(#d-1) | $support.i<=q] mnhyper(ncp) == if ncp=0.0 then $lo --if ncp=$plusInfinity then return(hi::R) else d := dnhyper(ncp,$logdc,$support) +/[si*di for di in d for si in $support] f1(u) == mnhyper(u) - $x00 f2(u) == mnhyper(1/u) - $x00 ncpU x == --if x=$hi then $plusInfinity p:= pnhyper(x, 1.0, false) if p<$alpha then ridder(FUNCTION(fu1),0.0,1.0) else if p>$alpha then 1/ridder(FUNCTION(fu2), $doubleEps,1) else 1 fu1 u == pnhyper($x00,u,false) - $alpha fu2 u == pnhyper($x00,1/u,false) - $alpha ncpL x == if x=$lo then 0 else p:= pnhyper(x, 1, true) if p>$alpha then ridder(FUNCTION(fl1), 0,1) else if p<$alpha then 1/ridder(FUNCTION(fl2), $doubleEps,1) else 1 fl1 u == pnhyper($x00,u,true) - $alpha fl2 u == pnhyper($x00,1/u,true) - $alpha test7() == fisherTest(10,10,10,20,'"two-sided",1,true,0.95) alltests() == [test1(), test2(), test3(), test4(), test5(), test6()]
Value = T ; (DEFUN |fisherTest,fl2| ...) is being compiled. ;; The variable |$x00| is undefined. ;; The compiler will assume this variable is a global. ;; The variable |$alpha| is undefined. ;; The compiler will assume this variable is a global. ; (DEFUN |fisherTest,ncpL| ...) is being compiled. ;; The variable |$lo| is undefined. ;; The compiler will assume this variable is a global. ;; The variable |$doubleEps| is undefined. ;; The compiler will assume this variable is a global. ; (DEFUN |fisherTest,mnhyper| ...) is being compiled. ;; The variable |$logdc| is undefined. ;; The compiler will assume this variable is a global. ;; The variable |$support| is undefined. ;; The compiler will assume this variable is a global. ; (DEFUN |fisherTest,pnhyper| ...) is being compiled. ;; The variable |$m| is undefined. ;; The compiler will assume this variable is a global. ;; The variable |$n| is undefined. ;; The compiler will assume this variable is a global. ;; The variable |$k| is undefined. ;; The compiler will assume this variable is a global. ; (DEFUN |fisherTest| ...) is being compiled. ;; The variable |$hi| is undefined. ;; The compiler will assume this variable is a global. ;; The variable |$plusInfinity| is undefined. ;; The compiler will assume this variable is a global. Value = 17616
Using this code in Axiom:
alltests()$Lisp
(3) |
fisherTest(10,10,10,20,"two-sided",1,true,0.95::SF)$Lisp
(4) |
For Reduce (which was also my first Reduce program) [NB: formatting has been lost in the output]?:
1: symbolic; nil on rounded; nil symbolic procedure msign(x, y); (abs x) * (if y>0.0 then 1.0 else if y<0.0 then -1.0 else 0.0); msign %% Numerical root finding using Ridders method %% (Exit criteria hacked: how can one return from a repeat .. until statement?) symbolic procedure ridders(func, x1, x2); begin scalar eps, maxit, fl, fh, xl, xh, ans, xnew, iterNum, fnew; eps:= 1.0e-12; maxit:= 100; fl := funcall(func, x1); fh := funcall(func, x2); xl := x1; xh := x2; ans := -1.0e30; xnew := 0.0e0; iterNum := 0; if (fl*fh) > 0.0 then rederr "Initial points are not either side of zero."; if fl=0.0 then x1 else if fh=0.0 then x2 %if (fl*fh) < 0.0 then else repeat begin scalar xm, fm, ss; xm:= 0.5*(xl+xh); fm:= funcall(func, xm); ss:= sqrt((fm*fm) - (fl*fh)); %if ss =0.0 then return ans; xnew:= xm + (((xm - xl) * (if (fl>fh) then 1.0 else -1.0) * fm) / ss); %if abs(xnew-ans) <= eps then return ans; ans:= xnew; fnew:= funcall(func, ans); %write(fnew); %if fnew=0.0 then return ans; if msign(fm,fnew) neq fm then begin; xl:= xm; fl:= fm; xh:= ans; fh:= fnew; end else if msign(fl, fnew) neq fl then begin; xh:= ans; fh:= fnew; end else if msign(fh, fnew) neq fh then begin; xl:= ans; fl:= fnew; end; iterNum:=iterNum+1; if iterNum >=maxit then rederr "Maximum iterations exceeded"; %if verbose then write xl, xh, fl, fh; end until abs(fnew)<eps or abs(xh-xl) <= eps; return ans end; ridders symbolic procedure choose(n, x); begin scalar total, denom; total := 1.0; for denom:=1:x do << total:=total/denom*(n-denom+1) >>; return total end; choose symbolic procedure dhyper(x, m, n, k); choose(m, x) * choose(n, k - x) / choose(m + n, k); dhyper procedure phyper(x, m, n, k, lowerTail); if lowerTail then for i:=1:x sum dhyper(i, m, n, k) else for i:=(x+1):k sum dhyper(i, m, n, k); phyper symbolic procedure testTolerance(x, y, atol); if abs(x-y) <= atol then t else nil; testtolerance symbolic procedure test1(); testTolerance(2*ridders(function(cos),0,2), cdr reval(algebraic pi),1e-8); test1 symbolic procedure test2(); testTolerance(choose(100, 5), 75287520, 0); test2 symbolic procedure test3(); testTolerance(dhyper(5, 10, 7, 8), 0.3628137, 1.0e-7); test3 symbolic procedure test4(); testTolerance(log(dhyper(5, 10, 7, 8)),-1.013866, 1.0e-7); test4 symbolic procedure test5(); testTolerance(phyper(5, 10, 7, 8, t),0.7821884, 1.0e-7); test5 symbolic procedure test6(); testTolerance(phyper(5, 10, 7, 8, nil),0.2178116, 1.0e-7); test6 symbolic procedure testSet1(); {test1(), test2(), test3(), test4(), test5(), test6()}; testset1 testSet1(); (t t t t t t) %% symbolic procedure fisherTest(a,b,c,d,alternative,oddsratio,confLevel); begin scalar m, n, k, x00, lo, hi, doubleEps, dnhyper,mnhyper,pnhyper,mle,ncpu,ncpl, support,d2,logdc,alpha, pvalue,cinterval; m := a+c; % first column n := b+d; % second column k := a+b; % first row x00 := a; lo := max(0, k-n); hi := min(k, m); support := for i:=lo:hi collect i; logdc := for each i in support collect log(dhyper(i, m, n, k)); doubleEps := 1.0e-10; dnhyper := function(lambda ncp; begin scalar maxd, sumd2, d, d2; d := for i:=1:length(logdc) collect nth(logdc,i)+log(ncp)*nth(support,i); maxd := apply(function(max),d); d2 :=for each di in d collect exp(di-maxd); sumd2 := for each i in d2 sum i; return for each d2i in d2 collect d2i/sumd2 end); mnhyper := function(lambda ncp; begin scalar d, value; value := if ncp=0.0 then lo %else if ncp equal 'plusInfinity then hi else begin; d := funcall(dnhyper,ncp); return for i:=1:length(d) sum nth(support,i)*nth(d,i) end; return value end); pnhyper := function(lambda(q,ncp,upperTail); if ncp=1.0 then (if upperTail then phyper(q-1, m, n, k, nil) else phyper(q, m, n, k, t)) else if ncp=0.0 then (if upperTail then (if q<=lo then 1.0 else 0.0) else (if q>=lo then 1.0 else 0.0)) else if ncp equal 'plusInfinity then (if upperTail then (if q<=hi then 1.0 else 0.0) else (if q>= hi then 1.0 else 0.0)) else begin scalar d, value; d := funcall(dnhyper,ncp); value := if upperTail then for i:=1:length(d) sum (if nth(support,i)>=q then nth(d,i) else 0) else for i:=1:length(d) sum (if nth(support,i)<=q then nth(d,i) else 0); return value end); ncpL := function(lambda alpha; if x00=lo then 0 else begin scalar p,value,f1,f2; f1 := function(lambda y; funcall(pnhyper,x00,y,t) - alpha); f2 := function(lambda y; funcall(pnhyper,x00,1/y,t) - alpha); p := funcall(pnhyper,x00, 1.0, t); value := if p>alpha then ridders(f1, doubleEps, 1) % zero bound caused problems else if p<alpha then 1/ridders(f2, doubleEps, 1) else 1; return value; end); ncpU := function(lambda alpha; if x00=hi then 'plusInfinity else begin scalar p,value,f1,f2; f1 := function(lambda y; funcall(pnhyper,x00,y,nil) - alpha); f2 := function(lambda y; funcall(pnhyper,x00,1/y,nil) - alpha); p := funcall(pnhyper,x00, 1.0, nil); value := if p<alpha then ridders(f1, 0, 1) else if p>alpha then 1/ridders(f2, doubleEps, 1) else 1; return value; end); pvalue := if alternative equal 'less then funcall(pnhyper,x00,oddsratio,nil) else if alternative equal 'greater then funcall(pnhyper,x00,oddsratio,t) else if alternative equal 'twosided then begin scalar relerr,dstar,dn; relErr:= 1+1.0e-7; dn:= funcall(dnhyper,oddsratio); dstar:= nth(dn,x00-lo+1)*relErr; return for each di in dn sum (if di<dstar then di else 0) end else -1; cInterval := if alternative equal 'less then {0.0, funcall(ncpU,1-confLevel)} else if alternative equal 'greater then {funcall(ncpL,1-confLevel), 'plusInfinity} else if alternative equal 'twosided then {funcall(ncpL,(1-confLevel)/2), funcall(ncpU,(1-confLevel)/2)} else {-1,-1}; % no match mle := if x00=lo then 0.0 else if x00=hi then 'plusInfinity else begin scalar mu, value, f1, f2; f1 := function(lambda y; funcall(mnhyper,y) - x00); f2 := function(lambda y; funcall(mnhyper,1/y) - x00); mu := funcall(mnhyper,1.0); value := if mu>x00 then ridders(f1,0,1) else if mu<x00 then 1/ridders(f2,doubleEps,1.0) else 1.0; return value; end; return {pvalue,cinterval,mle}; end; fishertest fishertest(10,10,10,20,'twosided,1,0.95); (0.25754924281098 (0.53839938167829 7.4363408387441) 1.9716269432603) fishertest(10,10,10,20,'less,1,0.95); (0.92948113166106 (0.0 6.1438085831682) 1.9716269432603) fishertest(10,10,10,20,'greater,1,0.95); (0.18830137576992 (0.6459937819479 plusinfinity) 1.9716269432603) symbolic procedure testSet2; begin scalar fit1; fit1 := fishertest(10,10,10,20,'twosided,1,0.95); return {testTolerance(first(fit1), 0.2575, 1.0e-3), testTolerance(caadr(fit1),0.5383996, 1.0e-6), testTolerance(cadadr(fit1),7.4363242, 1.0e-4), testTolerance(third(fit1),1.971640, 1.0e-4)} end; testset2 testSet2(); (t t t t) end; nil | reduce |
The implementation in Common Lisp was a more direct translation of the R code:
;; from cl-statistics.lisp (defun safe-exp (x) "Eliminates floating point underflow for the exponential function. Instead, it just returns 0.0d0" (setf x (coerce x 'double-float)) (if (< x (log least-positive-double-float)) 0.0d0 (exp x))) (defun ridder (func x1 x2 &key (eps 1.0d-16) (maxit 30) (verbose nil)) (let ( (fl (funcall func x1)) (fh (funcall func x2)) (xl x1) (xh x2) (ans -1.11d30) (xnew 0.0d0) (iter-num 0) ) (cond ((= fl 0) x1) ((= fh 0) x2) ((> (* fl fh) 0.0d0) (error "Functions of the start points are not either side of zero.")) ((< (* fl fh) 0.0d0) (loop (let* ( (xm (* 0.5d0 (+ xl xh))) (fm (funcall func xm)) (ss (sqrt (- (* fm fm) (* fl fh)))) ) (if (= ss 0.0d0) (return ans)) (setf xnew (+ xm (/ (* (- xm xl) (if (> fl fh) 1.0d0 -1.0d0) fm) ss))) (if (<= (abs (- xnew ans)) eps) (return ans)) (setf ans xnew fnew (funcall func ans)) (if (= fnew 0.0d0) (return ans)) (cond ((not (= (msign fm fnew) fm)) (setf xl xm fl fm xh ans fh fnew)) ((not (= (msign fl fnew) fl)) (setf xh ans fh fnew)) ((not (= (msign fh fnew) fh)) (setf xl ans fl fnew))) (incf iter-num) (if (>= iter-num maxit) (return (values nil "Maximum iterations exceeded"))) ;; (error)? (if verbose (format t "~,8f ~,8f ~,8f ~,8f~%" xl xh fl fh)) (if (<= (abs (- xh xl)) eps) (return ans)))))))) (defun msign (x y) (* (abs x) (cond ((> y 0.0d0) 1.0d0) ((< y 0.0d0) -1.0d0) (t 0.0d0)))) ;;(- (* (ridder #'cos 0.0d0 2.0d0) 2.0d0) pi)
(defun choose (n x) (loop for denom from 1 to x and numerator from n downto (- n (1- x)) and total = 1 then (* total (/ numerator denom)) finally (return total))) (defun dhyper (x m n k &key (log nil)) (let ((val (/ (* (choose m x) (choose n (- k x))) (choose (+ m n) k)))) (if log (log (coerce val 'double-float)) val))) (defun phyper (x m n k &key (lower-tail t)) (if lower-tail (loop for i from 1 to x summing (dhyper i m n k)) (loop for i from (1+ x) to k summing (dhyper i m n k))))
(defun fisher-test (x &key (alternative 'two-sided) (or 1.0d0) (conf-int t) (conf-level 0.95d0) (uniroot #'ridder)) "Fisher's exact test for a 2x2 integer array. This is a hand translation of R's fisher.test() making use of CL's large integers for the hypergeometric distribution" (let* ((m (loop for i upto 1 summing (aref x i 0))) (n (loop for i upto 1 summing (aref x i 1))) (k (loop for i upto 1 summing (aref x 0 i))) (x00 (aref x 0 0)) ; cf replacing x by (aref x 0 0) (lo (max 0 (- k n))) (hi (min k m)) (support (loop for i from lo to hi collect i)) (log-dc (loop for i in support collect (dhyper i m n k :log t))) (double-eps 1.0d-50)) (labels ((dnhyper (ncp) (setf ncp (coerce ncp 'double-float)) (let* ((d (loop for i in log-dc and j in support collect (+ i (* (log ncp) j)))) (max-d (apply #'max d)) (d2 (loop for i in d collect (safe-exp (- i max-d)))) ;; NB: safe-exp used here (sum-d2 (reduce #'+ d2))) (loop for i in d2 collect (/ i sum-d2)))) (mnhyper (ncp) (cond ((= ncp 0) lo) ((equal ncp 'infinity) hi) (t (loop for i in support and j in (dnhyper ncp) summing (* i j))))) (pnhyper (q ncp &key (upper-tail nil)) (cond ((= ncp 1) (if upper-tail (coerce (phyper (1- x00) m n k :lower-tail nil) 'double-float) (coerce (phyper x00 m n k) 'double-float))) ((= ncp 0) (if upper-tail (if (<= q lo) 1 0) (if (>= q lo) 1 0))) ((equal ncp 'infinity) (if upper-tail (if (<= q hi) 1 0) (if (>= q hi) 1 0))) (t (let ((d (dnhyper ncp))) (if upper-tail (loop for d-i in d and support-i in support when (>= support-i q) summing d-i) (loop for d-i in d and support-i in support when (<= support-i q) summing d-i)))))) (mle (x) (cond ((= x lo) 0) ((= x hi) 'infinity) (t (let ((mu (mnhyper 1))) (cond ((> mu x) (funcall uniroot (lambda (u) (- (mnhyper u) x)) 0 1)) ((< mu x) (/ (funcall uniroot (lambda (u) (- (mnhyper (/ u)) x)) double-eps 1))) (t 1)))))) (ncp-u (x alpha) (and (= x hi) 'infinity) (let ((p (pnhyper x 1))) (cond ((< p alpha) (funcall uniroot (lambda (u) (- (pnhyper x u) alpha)) 0 1)) ((> p alpha) (/ (funcall uniroot (lambda (u) (- (pnhyper x (/ u)) alpha)) double-eps 1))) (t 1)))) (ncp-l (x alpha) (and (= x lo) 0) (let ((p (pnhyper x 1 :upper-tail t))) (cond ((> p alpha) (funcall uniroot (lambda (u) (- (pnhyper x u :upper-tail t) alpha)) 0 1)) ((< p alpha) (/ (funcall uniroot (lambda (u) (- (pnhyper x (/ u) :upper-tail t) alpha)) double-eps 1))) (t 1))))) (let ((p-value (ecase alternative (less (pnhyper x00 or)) (greater (pnhyper x00 or :upper-tail t)) (two-sided (let* ((relErr (1+ 1.0d-7)) (d (dnhyper or)) (dstar (* (elt d (- x00 lo)) relErr))) (loop for di in d when (< di dstar) summing di))))) (c-interval (if conf-int (ecase alternative (less (list 0 (ncp-u x00 (- 1 conf-level)))) (greater (list (ncp-l x00 (- 1 conf-level)) 'infinity)) (two-sided (let ((alpha (/ (- 1 conf-level) 2))) (list (ncp-l x00 alpha) (ncp-u x00 alpha))))) nil)) (estimate (mle x00))) (values p-value c-interval estimate))))) ;;(fisher-test #2a((10 10) (10 20)))
; (DEFUN RIDDER ...) is being compiled. ;; The variable FNEW is undefined. ;; The compiler will assume this variable is a global. Value = 17624
With output: