login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxExpr revision 1 of 3

1 2 3
Editor: Bill Page
Time: 2015/02/27 12:58:35 GMT+0
Note:

changed:
-
\begin{spad}
)abbrev domain EXPR Expression
++ Top-level mathematical expressions
++ Author: Manuel Bronstein
++ Date Created: 19 July 1988
++ Date Last Updated: October 1993 (P.Gianni), February 1995 (MB)
++ Description: Expressions involving symbolic functions.
++ Keywords: operator, kernel, function.
Expression(R : Comparable) : Exports == Implementation where
  Q   ==> Fraction Integer
  K   ==> Kernel %
  MP  ==> SparseMultivariatePolynomial(R, K)
  AF  ==> AlgebraicFunction(R, %)
  EF  ==> ElementaryFunction(R, %)
  CF  ==> CombinatorialFunction(R, %)
  LF  ==> LiouvillianFunction(R, %)
  AN  ==> AlgebraicNumber
  KAN ==> Kernel AN
  FSF ==> FunctionalSpecialFunction(R, %)
  ESD ==> ExpressionSpace_&(%)
  FSD ==> FunctionSpace_&(%, R)
  POWER  ==> '%power
  SUP    ==> SparseUnivariatePolynomial

  Exports ==> FunctionSpace R with
    if R has IntegralDomain then
      AlgebraicallyClosedFunctionSpace R
      TranscendentalFunctionCategory
      CombinatorialOpsCategory
      LiouvillianFunctionCategory
      SpecialFunctionCategory
      reduce : % -> %
        ++ reduce(f) simplifies all the unreduced algebraic quantities
        ++ present in f by applying their defining relations.
      number? : % -> Boolean
        ++ number?(f) tests if f is rational
      simplifyPower : (%, Integer) -> %
        ++ simplifyPower(f, n) \undocumented{}
      if R has GcdDomain then
        factorPolynomial : SUP  % -> Factored SUP %
           ++ factorPolynomial(p) \undocumented{}
        squareFreePolynomial : SUP % -> Factored SUP %
           ++ squareFreePolynomial(p) \undocumented{}
      if R has RetractableTo Integer then RetractableTo AN
      setSimplifyDenomsFlag : Boolean -> Boolean
        ++ setSimplifyDenomsFlag(x) sets flag affecting simplification
        ++ of denominators.  If true irrational algebraics are removed from
        ++ denominators.  If false they are kept.
      getSimplifyDenomsFlag : () -> Boolean
        ++ getSimplifyDenomsFlag() gets values of flag affecting
        ++ simplification of denominators.  See setSimplifyDenomsFlag.

  Implementation ==> add
    import from KernelFunctions2(R, %)

    SYMBOL := '%symbol
    ALGOP  := '%alg


    retNotUnit     : % -> R
    retNotUnitIfCan : % -> Union(R, "failed")

    belong? op == true

    retNotUnit x ==
      (u := constantIfCan(k := retract(x)@K)) case R => u::R
      error "Not retractable"

    retNotUnitIfCan x ==
      (r := retractIfCan(x)@Union(K,"failed")) case "failed" => "failed"
      constantIfCan(r::K)

    if not(R has IntegralDomain) then
        operator op ==
            belong?(op)$FSD => operator(op)$FSD
            belong?(op)$ESD => operator(op)$ESD
            nullary? op and has?(op, SYMBOL) => operator(kernel(name op)$K)
            (n := arity op) case "failed" => operator name op
            operator(name op, n::NonNegativeInteger)

    SPCH ==> SparsePolynomialCoercionHelpers(R, Symbol, K)

    if R has Ring then
        poly_to_MP(p : Polynomial(R)) : MP ==
            ps := p pretend SparseMultivariatePolynomial(R, Symbol)
            vl1 : List Symbol := variables(ps)
            vl2 : List K := [kernel(z)$K for z in vl1]
            remap_variables(ps, vl1, vl2)$SPCH

        if R has IntegralDomain then
            reduc  : (%, List Kernel %) -> %
            algreduc : (%, List Kernel %) -> %
            commonk   : (%, %) -> List K
            commonk0  : (List K, List K) -> List K
            toprat    : % -> %
            algkernels : List K -> List K
            evl       : (MP, K, SparseUnivariatePolynomial %) -> Fraction MP
            evl0      : (MP, K) -> SparseUnivariatePolynomial Fraction MP

            Rep := Fraction MP
            0                == 0$Rep
            1                == 1$Rep
      --      one? x           == one?(x)$Rep
            one? x           == (x = 1)$Rep
            zero? x          == zero?(x)$Rep
            - x : %            == -$Rep x
            n : Integer * x : %  == n *$Rep x
            coerce(n : Integer) ==  coerce(n)$Rep@Rep::%
            x : % * y : %        == algreduc(x *$Rep y, commonk(x, y))
            x : % + y : %        == algreduc(x +$Rep y, commonk(x, y))
            (x : % - y : %) : %    == algreduc(x -$Rep y, commonk(x, y))
            x : % / y : %        == algreduc(x /$Rep y, commonk(x, y))

            number?(x : %) : Boolean ==
                if R has RetractableTo(Integer) then
                    ground?(x) or ((retractIfCan(x)@Union(Q,"failed")) case Q)
                else
                    ground?(x)

            simplifyPower(x : %, n : Integer) : % ==
                k : List K := kernels x
                is?(x, POWER) =>
                    -- Look for a power of a number in case we can do
                    -- a simplification
                    args : List % := argument first k
                    not(#args = 2) => error "Too many arguments to ^"
                    number?(args.1) =>
                       reduc((args.1) ^$Rep n,
                             algtower(args.1))^(args.2)
                    (first args)^(n*second(args))
                reduc(x ^$Rep n, algtower(x))

            x : % ^ n : NonNegativeInteger ==
                n = 0 => 1$%
                n = 1 => x
                simplifyPower(numerator x, n::Integer) /
                  simplifyPower(denominator x, n::Integer)

            x : % ^ n : Integer ==
                n = 0 => 1$%
                n = 1 => x
                n = -1 => 1/x
                simplifyPower(numerator x, n) / simplifyPower(denominator x, n)

            x : % ^ n : PositiveInteger ==
                n = 1 => x
                simplifyPower(numerator x, n::Integer) /
                  simplifyPower(denominator x, n::Integer)

            smaller?(x : %, y : %)  == smaller?(x, y)$Rep
            x : % = y : %        == (x - y) =$Rep 0$Rep
            numer x          == numer(x)$Rep
            denom x          == denom(x)$Rep

            EREP := Record(num : MP, den : MP)

            coerce(p : MP) : %   == [p, 1]$EREP pretend %

            coerce(p : Polynomial(R)) : % ==
                en := poly_to_MP(p)
                [en, 1]$EREP pretend %

            coerce(pq : Fraction(Polynomial(R))) : % ==
                en := poly_to_MP(numer(pq))
                ed := poly_to_MP(denom(pq))
                [en, ed]$EREP pretend %

            reduce x         == reduc(x, algtower x)
            commonk(x, y)    == commonk0(algtower x, algtower y)
            algkernels l     == select!(x +-> has?(operator x, ALGOP), l)
            toprat f == ratDenom(f, algtower f
                                )$AlgebraicManipulations(R, %)

            simple_root(r : K) : Boolean ==
                is?(r, 'nthRoot) =>
                    al := argument(r)
                    al.2 ~= 2::% => false
                    a := al.1
                    #algkernels(kernels(a)) > 0 => false
                    true
                false

            root_reduce(x : %, r : K) : % ==
                 a := argument(r).1
                 an := numer(a)
                 dn := denom(a)
                 dp := univariate(denom x, r)
                 n0 := numer x
                 c1 := leadingCoefficient(dp)
                 c0 := leadingCoefficient(reductum(dp))
                 n1 := dn*(c0*n0 - monomial(1, r, 1)$MP*c1*n0)
                 d1 := c0*c0*dn - an*c1*c1
                 reduc(n1 /$Rep d1, [r])

            DEFVAR(algreduc_flag$Lisp, false$Boolean)$Lisp

            getSimplifyDenomsFlag() ==
                algreduc_flag$Lisp

            setSimplifyDenomsFlag(x) ==
                res := getSimplifyDenomsFlag()
                SETF(algreduc_flag$Lisp, x)$Lisp
                res

            algreduc(x, ckl) ==
                x1 := reduc(x, ckl)
                not(getSimplifyDenomsFlag()) => x1
                akl := algtower(1$MP /$Rep denom x1)
                #akl = 0 => x1
                if #akl = 1 then
                    r := akl.1
                    simple_root(r) =>
                        return root_reduce(x, r)
                sas := create()$SingletonAsOrderedSet
                for k in akl repeat
                   q := univariate(x1, k, minPoly k
                      )$PolynomialCategoryQuotientFunctions(IndexedExponents K,
                          K, R, MP, %)
                   x1 := retract(eval(q, sas, k::%))@%
                reduc(x1, akl)

            x : MP / y : MP ==
                reduc(x /$Rep y, commonk(x /$Rep 1$MP, y /$Rep 1$MP))

            -- since we use the reduction from FRAC SMP which asssumes
            -- that the variables are independent, we must remove algebraic
            -- from the denominators

            reducedSystem(m : Matrix %) : Matrix(R) ==
                mm : Matrix(MP) := reducedSystem(map(toprat, m))$Rep
                reducedSystem(mm)$MP

            reducedSystem(m : Matrix %, v : Vector %):
              Record(mat : Matrix R, vec : Vector R) ==
                r : Record(mat : Matrix MP, vec : Vector MP) :=
                    reducedSystem(map(toprat, m), map(toprat, v))$Rep
                reducedSystem(r.mat, r.vec)$MP

      -- The result MUST be left sorted deepest first   MB 3/90
            commonk0(x, y) ==
                ans := empty()$List(K)
                for k in reverse! x repeat
                    if member?(k, y) then ans := concat(k, ans)
                ans

            rootOf(x : SparseUnivariatePolynomial %, v : Symbol) ==
                rootOf(x, v)$AF
            rootSum(x : %, p : SparseUnivariatePolynomial %, v : Symbol) : % ==
                rootSum(x, p, v)$AF
            pi()                      == pi()$EF
            exp x                     == exp(x)$EF
            log x                     == log(x)$EF
            sin x                     == sin(x)$EF
            cos x                     == cos(x)$EF
            tan x                     == tan(x)$EF
            cot x                     == cot(x)$EF
            sec x                     == sec(x)$EF
            csc x                     == csc(x)$EF
            asin x                    == asin(x)$EF
            acos x                    == acos(x)$EF
            atan x                    == atan(x)$EF
            acot x                    == acot(x)$EF
            asec x                    == asec(x)$EF
            acsc x                    == acsc(x)$EF
            sinh x                    == sinh(x)$EF
            cosh x                    == cosh(x)$EF
            tanh x                    == tanh(x)$EF
            coth x                    == coth(x)$EF
            sech x                    == sech(x)$EF
            csch x                    == csch(x)$EF
            asinh x                   == asinh(x)$EF
            acosh x                   == acosh(x)$EF
            atanh x                   == atanh(x)$EF
            acoth x                   == acoth(x)$EF
            asech x                   == asech(x)$EF
            acsch x                   == acsch(x)$EF

            abs x                     == abs(x)$FSF
            Gamma x                   == Gamma(x)$FSF
            Gamma(a, x)               == Gamma(a, x)$FSF
            Beta(x, y)                == Beta(x, y)$FSF
            digamma x                 == digamma(x)$FSF
            polygamma(k, x)           == polygamma(k, x)$FSF
            besselJ(v, x)             == besselJ(v, x)$FSF
            besselY(v, x)             == besselY(v, x)$FSF
            besselI(v, x)             == besselI(v, x)$FSF
            besselK(v, x)             == besselK(v, x)$FSF
            airyAi x                  == airyAi(x)$FSF
            airyAiPrime(x)            == airyAiPrime(x)$FSF
            airyBi x                  == airyBi(x)$FSF
            airyBiPrime(x)            == airyBiPrime(x)$FSF
            lambertW(x)               == lambertW(x)$FSF
            polylog(s, x)             == polylog(s, x)$FSF
            weierstrassP(g2, g3, x)   == weierstrassP(g2, g3, x)$FSF
            weierstrassPPrime(g2, g3, x) == weierstrassPPrime(g2, g3, x)$FSF
            weierstrassSigma(g2, g3, x) == weierstrassSigma(g2, g3, x)$FSF
            weierstrassZeta(g2, g3, x) == weierstrassZeta(g2, g3, x)$FSF
            -- weierstrassPInverse(g2, g3, z) == weierstrassPInverse(g2, g3, z)$FSF
            whittakerM(k, m, z) == whittakerM(k, m, z)$FSF
            whittakerW(k, m, z) == whittakerW(k, m, z)$FSF
            angerJ(v, z) == angerJ(v, z)$FSF
            weberE(v, z) == weberE(v, z)$FSF
            struveH(v, z) == struveH(v, z)$FSF
            struveL(v, z) == struveL(v, z)$FSF
            hankelH1(v, z) == hankelH1(v, z)$FSF
            hankelH2(v, z) == hankelH2(v, z)$FSF
            lommelS1(mu, nu, z) == lommelS1(mu, nu, z)$FSF
            lommelS2(mu, nu, z) == lommelS2(mu, nu, z)$FSF
            kummerM(mu, nu, z) == kummerM(mu, nu, z)$FSF
            kummerU(mu, nu, z) == kummerU(mu, nu, z)$FSF
            legendreP(nu, mu, z) == legendreP(nu, mu, z)$FSF
            legendreQ(nu, mu, z) == legendreQ(nu, mu, z)$FSF
            kelvinBei(v, z) == kelvinBei(v, z)$FSF
            kelvinBer(v, z) == kelvinBer(v, z)$FSF
            kelvinKei(v, z) == kelvinKei(v, z)$FSF
            kelvinKer(v, z) == kelvinKer(v, z)$FSF
            ellipticK(m) == ellipticK(m)$FSF
            ellipticE(m) == ellipticE(m)$FSF
            ellipticE(z, m) == ellipticE(z, m)$FSF
            ellipticF(z, m) == ellipticF(z, m)$FSF
            ellipticPi(z, n, m) == ellipticPi(z, n, m)$FSF
            jacobiSn(z, m) == jacobiSn(z, m)$FSF
            jacobiCn(z, m) == jacobiCn(z, m)$FSF
            jacobiDn(z, m) == jacobiDn(z, m)$FSF
            jacobiZeta(z, m) == jacobiZeta(z, m)$FSF
            jacobiTheta(q, z) == jacobiTheta(q, z)$FSF
            lerchPhi(z, s, a) == lerchPhi(z, s, a)$FSF
            riemannZeta(z) == riemannZeta(z)$FSF
            charlierC(n, a, z) == charlierC(n, a, z)$FSF
            hermiteH(n, z) == hermiteH(n, z)$FSF
            jacobiP(n, a, b, z) == jacobiP(n, a, b, z)$FSF
            laguerreL(n, a, z) == laguerreL(n, a, z)$FSF
            meixnerM(n, b, c, z) == meixnerM(n, b, c, z)$FSF

            if % has RetractableTo(Integer) then
                hypergeometricF(la, lb, x) == hypergeometricF(la, lb, x)$FSF
                meijerG(la, lb, lc, ld, x) == meijerG(la, lb, lc, ld, x)$FSF

            x : % ^ y : %                 == x ^$CF y
            factorial x               == factorial(x)$CF
            binomial(n, m)            == binomial(n, m)$CF
            permutation(n, m)         == permutation(n, m)$CF
            factorials x              == factorials(x)$CF
            factorials(x, n)          == factorials(x, n)$CF
            summation(x : %, n : Symbol)           == summation(x, n)$CF
            summation(x : %, s : SegmentBinding %) == summation(x, s)$CF
            product(x : %, n : Symbol)             == product(x, n)$CF
            product(x : %, s : SegmentBinding %)   == product(x, s)$CF

            erf x                              == erf(x)$LF
            erfi x                             == erfi(x)$LF
            Ei x                               == Ei(x)$LF
            Si x                               == Si(x)$LF
            Ci x                               == Ci(x)$LF
            Shi x                              == Shi(x)$LF
            Chi x                              == Chi(x)$LF
            li x                               == li(x)$LF
            dilog x                            == dilog(x)$LF
            fresnelS x                         == fresnelS(x)$LF
            fresnelC x                         == fresnelC(x)$LF
            integral(x : %, n : Symbol)            == integral(x, n)$LF
            integral(x : %, s : SegmentBinding %)  == integral(x, s)$LF

            operator op ==
                belong?(op)$AF  => operator(op)$AF
                belong?(op)$EF  => operator(op)$EF
                belong?(op)$CF  => operator(op)$CF
                belong?(op)$LF  => operator(op)$LF
                belong?(op)$FSF => operator(op)$FSF
                belong?(op)$FSD => operator(op)$FSD
                belong?(op)$ESD => operator(op)$ESD
                nullary? op and has?(op, SYMBOL) => operator(kernel(name op)$K)
                (n := arity op) case "failed" => operator name op
                operator(name op, n::NonNegativeInteger)

            reduc(x, l) ==
                for k in l repeat
                    p := minPoly k
                    x := evl(numer x, k, p) /$Rep evl(denom x, k, p)
                x

            evl0(p, k) ==
                numer univariate(p::Fraction(MP),
                  k)$PolynomialCategoryQuotientFunctions(IndexedExponents K,
                                                         K, R, MP, Fraction MP)

            -- uses some operations from Rep instead of % in order not to
            -- reduce recursively during those operations.
            evl(p, k, m) ==
                degree(p, k) < degree m => p::Fraction(MP)
                (((evl0(p, k) pretend SparseUnivariatePolynomial(%)) rem m)
                   pretend SparseUnivariatePolynomial Fraction MP)
                     (k::MP::Fraction(MP))

            if R has GcdDomain then
                noalg? : SUP % -> Boolean

                noalg? p ==
                    while p ~= 0 repeat
                        not empty? algkernels kernels leadingCoefficient p =>
                            return false
                        p := reductum p
                    true

                gcdPolynomial(p : SUP %, q : SUP %) ==
                    noalg? p and noalg? q => gcdPolynomial(p, q)$Rep
                    gcdPolynomial(p, q)$GcdDomain_&(%)

                factorPolynomial(x : SUP %) : Factored SUP % ==
                    uf := factor(x pretend SUP(Rep))$SupFractionFactorizer(
                                              IndexedExponents K, K, R, MP)
                    uf pretend Factored SUP %

                squareFreePolynomial(x : SUP %) : Factored SUP % ==
                    uf := squareFree(x pretend SUP(Rep))$SupFractionFactorizer(
                                                IndexedExponents K, K, R, MP)
                    uf pretend Factored SUP %

            if R is AN then
                -- this is to force the coercion R -> EXPR R to be used
                -- instead of the coercioon AN -> EXPR R which loops.
                -- simpler looking code will fail! MB 10/91
                coerce(x : AN) : % ==
                    (monomial(x, 0$IndexedExponents(K))$MP)::%

            if (R has RetractableTo Integer) then
                x : % ^ r : Q                  == x ^$AF r
                minPoly k                  == minPoly(k)$AF
                definingPolynomial x       == definingPolynomial(x)$AF
                retract(x : %) : Q         == retract(x)$Rep
                retractIfCan(x : %) : Union(Q, "failed") == retractIfCan(x)$Rep

                if not(R is AN) then
                    k2expr  : KAN -> %
                    smp2expr : SparseMultivariatePolynomial(Integer, KAN) -> %
                    R2AN    : R  -> Union(AN, "failed")
                    k2an    : K  -> Union(AN, "failed")
                    smp2an  : MP -> Union(AN, "failed")

                    coerce(x : AN) : % == smp2expr(numer x) / smp2expr(denom x)
                    k2expr k ==
                        map(x +-> x::%, k)$ExpressionSpaceFunctions2(AN, %)

                    smp2expr p ==
                        map(k2expr, x +-> x::%, p
                           )$PolynomialCategoryLifting(IndexedExponents KAN,
                             KAN, Integer, SparseMultivariatePolynomial(
                               Integer, KAN), %)

                    retractIfCan(x : %) : Union(AN, "failed") ==
                        ((n := smp2an numer x) case AN) and
                          ((d := smp2an denom x) case AN)
                            => (n::AN) / (d::AN)
                        "failed"

                    R2AN r ==
                        (u := retractIfCan(r::%)@Union(Q, "failed")) case Q =>
                             u::Q::AN
                        "failed"

                    k2an k ==
                        not(belong?(op := operator k)$AN) => "failed"
                        is?(op, 'rootOf) =>
                            args := argument(k)
                            a2 := args.2
                            k1u := retractIfCan(a2)@Union(K, "failed")
                            k1u case "failed" => "failed"
                            k1 := k1u::K
                            s1u := retractIfCan(a2)@Union(Symbol, "failed")
                            s1u case "failed" => "failed"
                            s1 := s1u::Symbol
                            a1 := args.1
                            denom(a1) ~= 1 =>
                                error "Bad argument to rootOf"
                            eq := univariate(numer(a1), k1)
                            eqa : SUP(AN) := 0
                            while eq ~= 0 repeat
                                cc := leadingCoefficient(eq)::%
                                ccu := retractIfCan(cc)@Union(AN, "failed")
                                ccu case "failed" => return "failed"
                                eqa := eqa + monomial(ccu::AN, degree eq)
                                eq := reductum eq
                            rootOf(eqa, s1)$AN
                        arg : List(AN) := empty()
                        for x in argument k repeat
                            if (a := retractIfCan(x)@Union(AN, "failed"))
                              case "failed" then
                                return "failed"
                            else arg := concat(a::AN, arg)
                        (operator(op)$AN) reverse!(arg)

                    smp2an p ==
                        (x1 := mainVariable p) case "failed" =>
                            R2AN leadingCoefficient p
                        up := univariate(p, k := x1::K)
                        (t  := k2an k) case "failed" => "failed"
                        ans : AN := 0
                        while not ground? up repeat
                            (c := smp2an leadingCoefficient up)
                              case "failed" => return "failed"
                            ans := ans + (c::AN) * (t::AN) ^ (degree up)
                            up  := reductum up
                        (c := smp2an leadingCoefficient up)
                          case "failed" => "failed"
                        ans + c::AN

            if R has ConvertibleTo InputForm then
                convert(x : %) : InputForm == convert(x)$Rep
                import from MakeUnaryCompiledFunction(%, %, %)
                eval(f : %, op : BasicOperator, g : %, x : Symbol) : % ==
                    eval(f, [op], [g], x)
                eval(f : %, ls : List BasicOperator, lg : List %, x : Symbol) ==
                    -- handle subscripted symbols by renaming -> eval
                    -- -> renaming back
                    llsym : List List Symbol := [variables g for g in lg]
                    lsym : List Symbol := removeDuplicates concat llsym
                    lsd : List Symbol := select (scripted?, lsym)
                    empty? lsd =>
                        eval(f, ls, [compiledFunction(g, x) for g in lg])
                    ns : List Symbol := [new()$Symbol for i in lsd]
                    lforwardSubs : List Equation % :=
                        [(i::%)= (j::%) for i in lsd for j in ns]
                    lbackwardSubs : List Equation % :=
                        [(j::%)= (i::%) for i in lsd for j in ns]
                    nlg : List % := [subst(g, lforwardSubs) for g in lg]
                    res : % :=
                        eval(f, ls, [compiledFunction(g, x) for g in nlg])
                    subst(res, lbackwardSubs)

            if R has PatternMatchable Integer then
                patternMatch(x : %, p : Pattern Integer,
                             l : PatternMatchResult(Integer, %)) ==
                    patternMatch(x, p,
                                 l)$PatternMatchFunctionSpace(Integer, R, %)

            if R has PatternMatchable Float then
                patternMatch(x : %, p : Pattern Float,
                             l : PatternMatchResult(Float, %)) ==
                    patternMatch(x, p,
                                 l)$PatternMatchFunctionSpace(Float, R, %)

        else  -- ring R is not an integral domain

            Rep := MP
            0              == 0$Rep
            1              == 1$Rep
            - x : %          == -$Rep x
            n : Integer *x : % == n *$Rep x
            x : % * y : %      == x *$Rep y
            x : % + y : %      == x +$Rep y
            x : % = y : %      == x =$Rep y
            smaller?(x : %, y : %)      == smaller?(x, y)$Rep
            numer x        == x@Rep
            coerce(p : MP) : % == p

            coerce(p : Polynomial(R)) : % ==
                poly_to_MP(p) pretend %

            reducedSystem(m : Matrix %) : Matrix(R) ==
              reducedSystem(m)$Rep

            reducedSystem(m : Matrix %, v : Vector %):
             Record(mat : Matrix R, vec : Vector R) ==
              reducedSystem(m, v)$Rep

            if R has ConvertibleTo InputForm then
              convert(x : %) : InputForm == convert(x)$Rep

            if R has PatternMatchable Integer then
              kintmatch : (K, Pattern Integer, PatternMatchResult(Integer, Rep))
                                         -> PatternMatchResult(Integer, Rep)

              kintmatch(k, p, l) ==
                patternMatch(k, p, l pretend PatternMatchResult(Integer, %)
                  )$PatternMatchKernel(Integer, %)
                    pretend PatternMatchResult(Integer, Rep)

              patternMatch(x : %, p : Pattern Integer,
               l : PatternMatchResult(Integer, %)) ==
                patternMatch(x@Rep, p,
                             l pretend PatternMatchResult(Integer, Rep),
                              kintmatch
                               )$PatternMatchPolynomialCategory(Integer,
                                IndexedExponents K, K, R, Rep)
                                  pretend PatternMatchResult(Integer, %)

            if R has PatternMatchable Float then
              kfltmatch : (K, Pattern Float, PatternMatchResult(Float, Rep))
                                         -> PatternMatchResult(Float, Rep)

              kfltmatch(k, p, l) ==
                patternMatch(k, p, l pretend PatternMatchResult(Float, %)
                  )$PatternMatchKernel(Float, %)
                    pretend PatternMatchResult(Float, Rep)

              patternMatch(x : %, p : Pattern Float,
               l : PatternMatchResult(Float, %)) ==
                patternMatch(x@Rep, p,
                             l pretend PatternMatchResult(Float, Rep),
                              kfltmatch
                               )$PatternMatchPolynomialCategory(Float,
                                IndexedExponents K, K, R, Rep)
                                  pretend PatternMatchResult(Float, %)

    else   -- R is not even a ring
        if R has AbelianMonoid then
          import from ListToMap(K, %)

          kereval        : (K, List K, List %) -> %
          subeval        : (K, List K, List %) -> %

          Rep := FreeAbelianGroup K

          0              == 0$Rep
          x : % + y : %      == x +$Rep y
          x : % = y : %      == x =$Rep y
          smaller?(x : %, y : %)      == smaller?(x, y)$Rep
          coerce(k : K) : %  == coerce(k)$Rep
          kernels(x : %) : List(K) == [f.gen for f in terms x]
          coerce(x : R) : %  == (zero? x => 0; constantKernel(x)::%)
          retract(x : %) : R == (zero? x => 0; retNotUnit x)
          coerce(x : %) : OutputForm == coerce(x)$Rep
          kereval(k, lk, lv) ==
            match(lk, lv, k, (x2 : K) : % +->
              map(x1+->eval(x1, lk, lv), x2))

          subeval(k, lk, lv) ==
            match(lk, lv, k,
              (x : K) : % +->
                kernel(operator x, [subst(a, lk, lv) for a in argument x]))

          isPlus x ==
            empty?(l := terms x) or empty? rest l => "failed"
            [t.exp *$Rep t.gen for t in l]$List(%)

          isMult x ==
            empty?(l := terms x) or not empty? rest l => "failed"
            t := first l
            [t.exp, t.gen]

          eval(x : %, lk : List K, lv : List %) ==
            _+/[t.exp * kereval(t.gen, lk, lv) for t in terms x]

          subst(x : %, lk : List K, lv : List %) ==
            _+/[t.exp * subeval(t.gen, lk, lv) for t in terms x]

          retractIfCan(x:%):Union(R, "failed") ==
            zero? x => 0
            retNotUnitIfCan x

          if R has AbelianGroup then -(x : %) == -$Rep x

--      else      -- R is not an AbelianMonoid
--        if R has SemiGroup then
--    Rep := FreeGroup K
--    1              == 1$Rep
--    x: % * y: %      == x *$Rep y
--    x: % = y: %      == x =$Rep y
--    coerce(k: K): %  == k::Rep
--    kernels(x : %) : List(K) == [f.gen for f in factors x]
--    coerce(x: R): %  == (one? x => 1; constantKernel x)
--    retract(x: %): R == (one? x => 1; retNotUnit x)
--    coerce(x: %): OutputForm == coerce(x)$Rep

--    retractIfCan(x:%):Union(R, "failed") ==
--      one? x => 1
--      retNotUnitIfCan x

--    if R has Group then inv(x: %): % == inv(x)$Rep

        else   -- R is nothing
            import from ListToMap(K, %)

            Rep := K

            smaller?(x : %, y : %)      == smaller?(x, y)$Rep
            x : % = y : %      == x =$Rep y
            coerce(k : K) : %  == k
            kernels(x : %) : List(K) == [x pretend K]
            coerce(x : R) : %  == constantKernel x
            retract(x : %) : R == retNotUnit x
            retractIfCan(x:%):Union(R, "failed") == retNotUnitIfCan x
            coerce(x : %) : OutputForm               == coerce(x)$Rep

            eval(x : %, lk : List K, lv : List %) ==
              match(lk, lv, x pretend K, (x1 : K) : % +->
                map(x2+->eval(x2, lk, lv), x1))

            subst(x, lk, lv) ==
              match(lk, lv, x pretend K, (x1 : K) : % +->
                  kernel(operator x1, [subst(a, lk, lv) for a in argument x1]))

            if R has ConvertibleTo InputForm then
              convert(x : %) : InputForm == convert(x)$Rep

--          if R has PatternMatchable Integer then
--            convert(x: %): Pattern(Integer) == convert(x)$Rep
--
--            patternMatch(x: %, p: Pattern Integer,
--             l: PatternMatchResult(Integer, %)) ==
--              patternMatch(x pretend K, p, l)$PatternMatchKernel(Integer, %)
--
--          if R has PatternMatchable Float then
--            convert(x: %): Pattern(Float) == convert(x)$Rep
--
--            patternMatch(x: %, p: Pattern Float,
--             l: PatternMatchResult(Float, %)) ==
--              patternMatch(x pretend K, p, l)$PatternMatchKernel(Float, %)

)abbrev package PAN2EXPR PolynomialAN2Expression
++ Author: Barry Trager
++ Date Created: 8 Oct 1991
++ Description: This package provides a coerce from polynomials over
++ algebraic numbers to \spadtype{Expression AlgebraicNumber}.
PolynomialAN2Expression() : Target == Implementation where
  EXPR ==> Expression(Integer)
  AN ==> AlgebraicNumber
  PAN ==> Polynomial AN
  SY ==> Symbol
  Target ==> with
      coerce : Polynomial AlgebraicNumber -> Expression(Integer)
        ++ coerce(p) converts the polynomial \spad{p} with algebraic number
        ++ coefficients to \spadtype{Expression Integer}.
      coerce : Fraction Polynomial AlgebraicNumber -> Expression(Integer)
        ++ coerce(rf) converts \spad{rf}, a fraction of polynomial \spad{p} with
        ++ algebraic number coefficients to \spadtype{Expression Integer}.
  Implementation ==> add
    coerce(p : PAN) : EXPR ==
        map(x+->x::EXPR, x+->x::EXPR, p)$PolynomialCategoryLifting(
                                  IndexedExponents SY, SY, AN, PAN, EXPR)
    coerce(rf : Fraction PAN) : EXPR ==
        numer(rf)::EXPR / denom(rf)::EXPR

)abbrev package EXPR2 ExpressionFunctions2
++ Lifting of maps to Expressions
++ Author: Manuel Bronstein
++ Description: Lifting of maps to Expressions.
++ Date Created: 16 Jan 1989
++ Date Last Updated: 22 Jan 1990
ExpressionFunctions2(R : Comparable, S : Comparable):
 Exports == Implementation where
  K   ==> Kernel R
  F2  ==> FunctionSpaceFunctions2(R, Expression R, S, Expression S)
  E2  ==> ExpressionSpaceFunctions2(Expression R, Expression S)

  Exports ==> with
    map : (R -> S, Expression R) -> Expression S
      ++ map(f, e) applies f to all the constants appearing in e.

  Implementation == add
    if S has Ring and R has Ring then
      map(f, r) == map(f, r)$F2
    else
      map(f, r) == map(x+->map(f, x), retract r)$E2

)abbrev package PMPREDFS FunctionSpaceAttachPredicates
++ Predicates for pattern-matching.
++ Author: Manuel Bronstein
++ Description: Attaching predicates to symbols for pattern matching.
++ Date Created: 21 Mar 1989
++ Date Last Updated: 23 May 1990
++ Keywords: pattern, matching.
FunctionSpaceAttachPredicates(R, F, D) : Exports == Implementation where
  R : Comparable
  F : FunctionSpace R
  D : Type

  K  ==> Kernel F

  Exports ==> with
    suchThat : (F, D -> Boolean) -> F
      ++ suchThat(x, foo) attaches the predicate foo to x;
      ++ error if x is not a symbol.
    suchThat : (F, List(D -> Boolean)) -> F
      ++ suchThat(x, [f1, f2, ..., fn]) attaches the predicate
      ++ f1 and f2 and ... and fn to x.
      ++ Error: if x is not a symbol.

  Implementation ==> add
    import from AnyFunctions1(D -> Boolean)

    PMPRED  := '%pmpredicate

    st   : (K, List Any) -> F
    preds : K -> List Any
    mkk  : BasicOperator -> F

    suchThat(p : F, f : D -> Boolean) == suchThat(p, [f])
    mkk op                        == kernel(op, empty()$List(F))

    preds k ==
      (u := property(operator k, PMPRED)) case "failed" => empty()
      (u::None) pretend List(Any)

--    st(k, l) ==
--      mkk assert(setProperty(copy operator k, PMPRED,
--                 concat(preds k, l) pretend None), string(new()$Symbol))

    -- Looks fishy, but we try to preserve meaning
    st(k, l) ==
      kk := copy operator k
      setProperty(kk, PMPRED, concat(preds k, l) pretend None)
      kernel(kk, empty()$List(F))

    suchThat(p : F, l : List(D -> Boolean)) ==
      retractIfCan(p)@Union(Symbol, "failed") case Symbol =>
        st(retract(p)@K, [f::Any for f in l])
      error "suchThat must be applied to symbols only"

)abbrev package PMASSFS FunctionSpaceAssertions
++ Assertions for pattern-matching
++ Author: Manuel Bronstein
++ Description: Attaching assertions to symbols for pattern matching;
++ Date Created: 21 Mar 1989
++ Date Last Updated: 23 May 1990
++ Keywords: pattern, matching.
FunctionSpaceAssertions(R, F) : Exports == Implementation where
  R : Comparable
  F : FunctionSpace R

  K  ==> Kernel F
  PMOPT   ==> '%pmoptional
  PMMULT  ==> '%pmmultiple
  PMCONST ==> '%pmconstant

  Exports ==> with
--    assert  : (F, String) -> F
--      ++ assert(x, s) makes the assertion s about x.
--      ++ Error: if x is not a symbol.
    constant : F -> F
      ++ constant(x) tells the pattern matcher that x should
      ++ match only the symbol 'x and no other quantity.
      ++ Error: if x is not a symbol.
    optional : F -> F
      ++ optional(x) tells the pattern matcher that x can match
      ++ an identity (0 in a sum, 1 in a product or exponentiation).
      ++ Error: if x is not a symbol.
    multiple : F -> F
      ++ multiple(x) tells the pattern matcher that x should
      ++ preferably match a multi-term quantity in a sum or product.
      ++ For matching on lists, multiple(x) tells the pattern matcher
      ++ that x should match a list instead of an element of a list.
      ++ Error: if x is not a symbol.

  Implementation ==> add
    ass  : (K, Symbol) -> F
    asst : (K, Symbol) -> F
    mkk  : BasicOperator -> F

    mkk op == kernel(op, empty()$List(F))

    ass(k, s) ==
      has?(op := operator k, s) => k::F
      mkk assert(copy op, s)

    asst(k, s) ==
      has?(op := operator k, s) => k::F
      mkk assert(op, s)

--    assert(x, s) ==
--      retractIfCan(x)@Union(Symbol, "failed") case Symbol =>
--        asst(retract(x)@K, s)
--      error "assert must be applied to symbols only"

    constant x ==
      retractIfCan(x)@Union(Symbol, "failed") case Symbol =>
        ass(retract(x)@K, PMCONST)
      error "constant must be applied to symbols only"

    optional x ==
      retractIfCan(x)@Union(Symbol, "failed") case Symbol =>
        ass(retract(x)@K, PMOPT)
      error "optional must be applied to symbols only"

    multiple x ==
      retractIfCan(x)@Union(Symbol, "failed") case Symbol =>
        ass(retract(x)@K, PMMULT)
      error "multiple must be applied to symbols only"

)abbrev package PMPRED AttachPredicates
++ Predicates for pattern-matching, unused
++ Author: Manuel Bronstein
++ Description: Attaching predicates to symbols for pattern matching.
++ Date Created: 21 Mar 1989
++ Date Last Updated: 23 May 1990
++ Keywords: pattern, matching.
AttachPredicates(D : Type) : Exports == Implementation where
  FE ==> Expression Integer

  Exports ==> with
    suchThat : (Symbol, D -> Boolean) -> FE
      ++ suchThat(x, foo) attaches the predicate foo to x.
    suchThat : (Symbol, List(D -> Boolean)) -> FE
      ++ suchThat(x, [f1, f2, ..., fn]) attaches the predicate
      ++ f1 and f2 and ... and fn to x.

  Implementation ==> add
    import from FunctionSpaceAttachPredicates(Integer, FE, D)

    suchThat(p : Symbol, f : D -> Boolean)       == suchThat(p::FE, f)
    suchThat(p : Symbol, l : List(D -> Boolean)) == suchThat(p::FE, l)

)abbrev package PMASS PatternMatchAssertions
++ Assertions for pattern-matching, unused
++ Author: Manuel Bronstein
++ Description: Attaching assertions to symbols for pattern matching.
++ Date Created: 21 Mar 1989
++ Date Last Updated: 23 May 1990
++ Keywords: pattern, matching.
PatternMatchAssertions() : Exports == Implementation where
  FE ==> Expression Integer

  Exports ==> with
--    assert  : (Symbol, String) -> FE
--      ++ assert(x, s) makes the assertion s about x.
    constant : Symbol -> FE
      ++ constant(x) tells the pattern matcher that x should
      ++ match only the symbol 'x and no other quantity.
    optional : Symbol -> FE
      ++ optional(x) tells the pattern matcher that x can match
      ++ an identity (0 in a sum, 1 in a product or exponentiation).;
    multiple : Symbol -> FE
      ++ multiple(x) tells the pattern matcher that x should
      ++ preferably match a multi-term quantity in a sum or product.
      ++ For matching on lists, multiple(x) tells the pattern matcher
      ++ that x should match a list instead of an element of a list.

  Implementation ==> add
    import from FunctionSpaceAssertions(Integer, FE)

    constant x   == constant(x::FE)
    multiple x   == multiple(x::FE)
    optional x   == optional(x::FE)
--    assert(x, s) == assert(x::FE, s)

)abbrev domain HACKPI Pi
++ Expressions in %pi only
++ Author: Manuel Bronstein
++ Description:
++  Symbolic fractions in %pi with integer coefficients;
++  The point for using Pi as the default domain for those fractions
++  is that Pi is coercible to the float types, and not Expression.
++ Date Created: 21 Feb 1990
++ Date Last Updated: 12 Mai 1992
Pi() : Exports == Implementation where
  PZ ==> Polynomial Integer
  UP ==> SparseUnivariatePolynomial Integer
  RF ==> Fraction UP

  Exports ==> Join(Field, CharacteristicZero, RetractableTo Integer,
                   RetractableTo Fraction Integer, RealConstant,
                   CoercibleTo DoubleFloat, CoercibleTo Float,
                   ConvertibleTo RF, ConvertibleTo InputForm) with
    pi : () -> % ++ pi() returns the symbolic %pi.
  Implementation ==> RF add
    Rep := RF

    sympi := '%pi

    p2sf : UP -> DoubleFloat
    p2f : UP -> Float
    p2o : UP -> OutputForm
    p2i : UP -> InputForm
    p2p :  UP -> PZ

    pi()                    == (monomial(1, 1)$UP :: RF) pretend %
    convert(x : %) : RF         == x pretend RF
    convert(x : %) : Float      == x::Float
    convert(x : %) : DoubleFloat == x::DoubleFloat
    coerce(x : %) : DoubleFloat  == p2sf(numer x) / p2sf(denom x)
    coerce(x : %) : Float       == p2f(numer x) / p2f(denom x)
    p2o p                   == outputForm(p, sympi::OutputForm)
    p2i p                   == convert p2p p

    p2p p ==
      ans : PZ := 0
      while p ~= 0 repeat
        ans := ans + monomial(leadingCoefficient(p)::PZ, sympi, degree p)
        p   := reductum p
      ans

    coerce(x : %) : OutputForm ==
      (r := retractIfCan(x)@Union(UP, "failed")) case UP => p2o(r::UP)
      p2o(numer x) / p2o(denom x)

    convert(x : %) : InputForm ==
      (r := retractIfCan(x)@Union(UP, "failed")) case UP => p2i(r::UP)
      p2i(numer x) / p2i(denom x)

    p2sf p ==
      map((x : Integer) : DoubleFloat+->x::DoubleFloat,
        p)$SparseUnivariatePolynomialFunctions2(Integer, DoubleFloat)
          (pi()$DoubleFloat)

    p2f p ==
      map((x : Integer) : Float+->x::Float,
        p)$SparseUnivariatePolynomialFunctions2(Integer, Float)
          (pi()$Float)

)abbrev package PICOERCE PiCoercions
++ Coercions from %pi to symbolic or numeric domains
++ Author: Manuel Bronstein
++ Description:
++  Provides a coercion from the symbolic fractions in %pi with
++ integer coefficients to any Expression type.
++ Date Created: 21 Feb 1990
++ Date Last Updated: 21 Feb 1990
PiCoercions(R : Join(Comparable, IntegralDomain)) : with
  coerce : Pi -> Expression R
    ++ coerce(f) returns f as an Expression(R).
 == add
  p2e : SparseUnivariatePolynomial Integer -> Expression R

  coerce(x : Pi) : Expression(R) ==
    f := convert(x)@Fraction(SparseUnivariatePolynomial Integer)
    p2e(numer f) / p2e(denom f)

  p2e p ==
    map((x1 : Integer) : Expression(R)+->x1::Expression(R),
      p)$SparseUnivariatePolynomialFunctions2(Integer, Expression R)
        (pi()$Expression(R))



)abbrev package ELINSOL ExpressionLinearSolve
++ Author: Waldek Hebisch
++ Description: Solver for linear systems represented as list
++  of expressions.  More efficient than using solve because
++  it does not check that system really is linear.
ExpressionLinearSolve(R : Join(IntegralDomain, Comparable),
                      F : FunctionSpace(R)) : Exports == Implementation
  where
    K ==> Kernel(F)
    MP ==> SparseMultivariatePolynomial(R, K)
    Exports ==> with
        lin_sol : (List(F), List Symbol) -> Union(List(F), "failed")
          ++ lin_sol(eql, vl) solves system of equations eql for
          ++ variables in vl.  Equations must be linear in variables
          ++ from vl.
    Implementation ==> add

        lin_coeff(x : MP, v : K) : F ==
            ux := univariate(x, v)
            d := degree(ux)
            d < 1 => 0
            d > 1 => error "lin_coeff: x is nonlinear"
            leadingCoefficient(ux)::F

        -- works only if numer(x) is linear in v from vl
        F_to_LF(x : F, vl : List(K)) : List(F) ==
            nx := numer(x)
            res0 := [lin_coeff(nx, v) for v in vl]
            ml := [numer(c)*monomial(1, v, 1)$MP for v in vl for c in res0]
            nx1 := reduce(_+, ml, 0)
            nx0 := nx - nx1
            reduce(max, [degree(nx0, v) for v in vl]@List(Integer)) > 0 =>
                error "x is nonlinear in vl"
            cons(nx0::F, res0)

        lin_sol(eql : List(F), vl : List Symbol) : Union(List(F), "failed") ==
            coefk := [retract(c::F)@K for c in vl]
            eqll := [F_to_LF(p, coefk) for p in eql]
            rh : Vector(F) := -vector([first(ll) for ll in eqll])$Vector(F)
            eqm := matrix([rest(ll) for ll in eqll])$Matrix(F)
            ss := solve(eqm, rh)$LinearSystemMatrixPackage1(F)
            ss.particular case "failed" => "failed"
            parts((ss.particular)::Vector(F))


--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

-- SPAD files for the functional world should be compiled in the
-- following order:
--
--   op  kl  fspace  algfunc elemntry combfunc EXPR
\end{spad}

spad
)abbrev domain EXPR Expression
++ Top-level mathematical expressions
++ Author: Manuel Bronstein
++ Date Created: 19 July 1988
++ Date Last Updated: October 1993 (P.Gianni), February 1995 (MB)
++ Description: Expressions involving symbolic functions.
++ Keywords: operator, kernel, function.
Expression(R : Comparable) : Exports == Implementation where
  Q   ==> Fraction Integer
  K   ==> Kernel %
  MP  ==> SparseMultivariatePolynomial(R, K)
  AF  ==> AlgebraicFunction(R, %)
  EF  ==> ElementaryFunction(R, %)
  CF  ==> CombinatorialFunction(R, %)
  LF  ==> LiouvillianFunction(R, %)
  AN  ==> AlgebraicNumber
  KAN ==> Kernel AN
  FSF ==> FunctionalSpecialFunction(R, %)
  ESD ==> ExpressionSpace_&(%)
  FSD ==> FunctionSpace_&(%, R)
  POWER  ==> '%power
  SUP    ==> SparseUnivariatePolynomial
Exports ==> FunctionSpace R with if R has IntegralDomain then AlgebraicallyClosedFunctionSpace R TranscendentalFunctionCategory CombinatorialOpsCategory LiouvillianFunctionCategory SpecialFunctionCategory reduce : % -> % ++ reduce(f) simplifies all the unreduced algebraic quantities ++ present in f by applying their defining relations. number? : % -> Boolean ++ number?(f) tests if f is rational simplifyPower : (%, Integer) -> % ++ simplifyPower(f, n) \undocumented{} if R has GcdDomain then factorPolynomial : SUP % -> Factored SUP % ++ factorPolynomial(p) \undocumented{} squareFreePolynomial : SUP % -> Factored SUP % ++ squareFreePolynomial(p) \undocumented{} if R has RetractableTo Integer then RetractableTo AN setSimplifyDenomsFlag : Boolean -> Boolean ++ setSimplifyDenomsFlag(x) sets flag affecting simplification ++ of denominators. If true irrational algebraics are removed from ++ denominators. If false they are kept. getSimplifyDenomsFlag : () -> Boolean ++ getSimplifyDenomsFlag() gets values of flag affecting ++ simplification of denominators. See setSimplifyDenomsFlag.
Implementation ==> add import from KernelFunctions2(R, %)
SYMBOL := '%symbol ALGOP := '%alg
retNotUnit : % -> R retNotUnitIfCan : % -> Union(R, "failed")
belong? op == true
retNotUnit x == (u := constantIfCan(k := retract(x)@K)) case R => u::R error "Not retractable"
retNotUnitIfCan x == (r := retractIfCan(x)@Union(K,"failed")) case "failed" => "failed" constantIfCan(r::K)
if not(R has IntegralDomain) then operator op == belong?(op)$FSD => operator(op)$FSD belong?(op)$ESD => operator(op)$ESD nullary? op and has?(op, SYMBOL) => operator(kernel(name op)$K) (n := arity op) case "failed" => operator name op operator(name op, n::NonNegativeInteger)
SPCH ==> SparsePolynomialCoercionHelpers(R, Symbol, K)
if R has Ring then poly_to_MP(p : Polynomial(R)) : MP == ps := p pretend SparseMultivariatePolynomial(R, Symbol) vl1 : List Symbol := variables(ps) vl2 : List K := [kernel(z)$K for z in vl1] remap_variables(ps, vl1, vl2)$SPCH
if R has IntegralDomain then reduc : (%, List Kernel %) -> % algreduc : (%, List Kernel %) -> % commonk : (%, %) -> List K commonk0 : (List K, List K) -> List K toprat : % -> % algkernels : List K -> List K evl : (MP, K, SparseUnivariatePolynomial %) -> Fraction MP evl0 : (MP, K) -> SparseUnivariatePolynomial Fraction MP
Rep := Fraction MP 0 == 0$Rep 1 == 1$Rep -- one? x == one?(x)$Rep one? x == (x = 1)$Rep zero? x == zero?(x)$Rep - x : % == -$Rep x n : Integer * x : % == n *$Rep x coerce(n : Integer) == coerce(n)$Rep@Rep::% x : % * y : % == algreduc(x *$Rep y, commonk(x, y)) x : % + y : % == algreduc(x +$Rep y, commonk(x, y)) (x : % - y : %) : % == algreduc(x -$Rep y, commonk(x, y)) x : % / y : % == algreduc(x /$Rep y, commonk(x, y))
number?(x : %) : Boolean == if R has RetractableTo(Integer) then ground?(x) or ((retractIfCan(x)@Union(Q,"failed")) case Q) else ground?(x)
simplifyPower(x : %, n : Integer) : % == k : List K := kernels x is?(x, POWER) => -- Look for a power of a number in case we can do -- a simplification args : List % := argument first k not(#args = 2) => error "Too many arguments to ^" number?(args.1) => reduc((args.1) ^$Rep n, algtower(args.1))^(args.2) (first args)^(n*second(args)) reduc(x ^$Rep n, algtower(x))
x : % ^ n : NonNegativeInteger == n = 0 => 1$% n = 1 => x simplifyPower(numerator x, n::Integer) / simplifyPower(denominator x, n::Integer)
x : % ^ n : Integer == n = 0 => 1$% n = 1 => x n = -1 => 1/x simplifyPower(numerator x, n) / simplifyPower(denominator x, n)
x : % ^ n : PositiveInteger == n = 1 => x simplifyPower(numerator x, n::Integer) / simplifyPower(denominator x, n::Integer)
smaller?(x : %, y : %) == smaller?(x, y)$Rep x : % = y : % == (x - y) =$Rep 0$Rep numer x == numer(x)$Rep denom x == denom(x)$Rep
EREP := Record(num : MP, den : MP)
coerce(p : MP) : % == [p, 1]$EREP pretend %
coerce(p : Polynomial(R)) : % == en := poly_to_MP(p) [en, 1]$EREP pretend %
coerce(pq : Fraction(Polynomial(R))) : % == en := poly_to_MP(numer(pq)) ed := poly_to_MP(denom(pq)) [en, ed]$EREP pretend %
reduce x == reduc(x, algtower x) commonk(x, y) == commonk0(algtower x, algtower y) algkernels l == select!(x +-> has?(operator x, ALGOP), l) toprat f == ratDenom(f, algtower f )$AlgebraicManipulations(R, %)
simple_root(r : K) : Boolean == is?(r, 'nthRoot) => al := argument(r) al.2 ~= 2::% => false a := al.1 #algkernels(kernels(a)) > 0 => false true false
root_reduce(x : %, r : K) : % == a := argument(r).1 an := numer(a) dn := denom(a) dp := univariate(denom x, r) n0 := numer x c1 := leadingCoefficient(dp) c0 := leadingCoefficient(reductum(dp)) n1 := dn*(c0*n0 - monomial(1, r, 1)$MP*c1*n0) d1 := c0*c0*dn - an*c1*c1 reduc(n1 /$Rep d1, [r])
DEFVAR(algreduc_flag$Lisp, false$Boolean)$Lisp
getSimplifyDenomsFlag() == algreduc_flag$Lisp
setSimplifyDenomsFlag(x) == res := getSimplifyDenomsFlag() SETF(algreduc_flag$Lisp, x)$Lisp res
algreduc(x, ckl) == x1 := reduc(x, ckl) not(getSimplifyDenomsFlag()) => x1 akl := algtower(1$MP /$Rep denom x1) #akl = 0 => x1 if #akl = 1 then r := akl.1 simple_root(r) => return root_reduce(x, r) sas := create()$SingletonAsOrderedSet for k in akl repeat q := univariate(x1, k, minPoly k )$PolynomialCategoryQuotientFunctions(IndexedExponents K, K, R, MP, %) x1 := retract(eval(q, sas, k::%))@% reduc(x1, akl)
x : MP / y : MP == reduc(x /$Rep y, commonk(x /$Rep 1$MP, y /$Rep 1$MP))
-- since we use the reduction from FRAC SMP which asssumes -- that the variables are independent, we must remove algebraic -- from the denominators
reducedSystem(m : Matrix %) : Matrix(R) == mm : Matrix(MP) := reducedSystem(map(toprat, m))$Rep reducedSystem(mm)$MP
reducedSystem(m : Matrix %, v : Vector %): Record(mat : Matrix R, vec : Vector R) == r : Record(mat : Matrix MP, vec : Vector MP) := reducedSystem(map(toprat, m), map(toprat, v))$Rep reducedSystem(r.mat, r.vec)$MP
-- The result MUST be left sorted deepest first MB 3/90 commonk0(x, y) == ans := empty()$List(K) for k in reverse! x repeat if member?(k, y) then ans := concat(k, ans) ans
rootOf(x : SparseUnivariatePolynomial %, v : Symbol) == rootOf(x, v)$AF rootSum(x : %, p : SparseUnivariatePolynomial %, v : Symbol) : % == rootSum(x, p, v)$AF pi() == pi()$EF exp x == exp(x)$EF log x == log(x)$EF sin x == sin(x)$EF cos x == cos(x)$EF tan x == tan(x)$EF cot x == cot(x)$EF sec x == sec(x)$EF csc x == csc(x)$EF asin x == asin(x)$EF acos x == acos(x)$EF atan x == atan(x)$EF acot x == acot(x)$EF asec x == asec(x)$EF acsc x == acsc(x)$EF sinh x == sinh(x)$EF cosh x == cosh(x)$EF tanh x == tanh(x)$EF coth x == coth(x)$EF sech x == sech(x)$EF csch x == csch(x)$EF asinh x == asinh(x)$EF acosh x == acosh(x)$EF atanh x == atanh(x)$EF acoth x == acoth(x)$EF asech x == asech(x)$EF acsch x == acsch(x)$EF
abs x == abs(x)$FSF Gamma x == Gamma(x)$FSF Gamma(a, x) == Gamma(a, x)$FSF Beta(x, y) == Beta(x, y)$FSF digamma x == digamma(x)$FSF polygamma(k, x) == polygamma(k, x)$FSF besselJ(v, x) == besselJ(v, x)$FSF besselY(v, x) == besselY(v, x)$FSF besselI(v, x) == besselI(v, x)$FSF besselK(v, x) == besselK(v, x)$FSF airyAi x == airyAi(x)$FSF airyAiPrime(x) == airyAiPrime(x)$FSF airyBi x == airyBi(x)$FSF airyBiPrime(x) == airyBiPrime(x)$FSF lambertW(x) == lambertW(x)$FSF polylog(s, x) == polylog(s, x)$FSF weierstrassP(g2, g3, x) == weierstrassP(g2, g3, x)$FSF weierstrassPPrime(g2, g3, x) == weierstrassPPrime(g2, g3, x)$FSF weierstrassSigma(g2, g3, x) == weierstrassSigma(g2, g3, x)$FSF weierstrassZeta(g2, g3, x) == weierstrassZeta(g2, g3, x)$FSF -- weierstrassPInverse(g2, g3, z) == weierstrassPInverse(g2, g3, z)$FSF whittakerM(k, m, z) == whittakerM(k, m, z)$FSF whittakerW(k, m, z) == whittakerW(k, m, z)$FSF angerJ(v, z) == angerJ(v, z)$FSF weberE(v, z) == weberE(v, z)$FSF struveH(v, z) == struveH(v, z)$FSF struveL(v, z) == struveL(v, z)$FSF hankelH1(v, z) == hankelH1(v, z)$FSF hankelH2(v, z) == hankelH2(v, z)$FSF lommelS1(mu, nu, z) == lommelS1(mu, nu, z)$FSF lommelS2(mu, nu, z) == lommelS2(mu, nu, z)$FSF kummerM(mu, nu, z) == kummerM(mu, nu, z)$FSF kummerU(mu, nu, z) == kummerU(mu, nu, z)$FSF legendreP(nu, mu, z) == legendreP(nu, mu, z)$FSF legendreQ(nu, mu, z) == legendreQ(nu, mu, z)$FSF kelvinBei(v, z) == kelvinBei(v, z)$FSF kelvinBer(v, z) == kelvinBer(v, z)$FSF kelvinKei(v, z) == kelvinKei(v, z)$FSF kelvinKer(v, z) == kelvinKer(v, z)$FSF ellipticK(m) == ellipticK(m)$FSF ellipticE(m) == ellipticE(m)$FSF ellipticE(z, m) == ellipticE(z, m)$FSF ellipticF(z, m) == ellipticF(z, m)$FSF ellipticPi(z, n, m) == ellipticPi(z, n, m)$FSF jacobiSn(z, m) == jacobiSn(z, m)$FSF jacobiCn(z, m) == jacobiCn(z, m)$FSF jacobiDn(z, m) == jacobiDn(z, m)$FSF jacobiZeta(z, m) == jacobiZeta(z, m)$FSF jacobiTheta(q, z) == jacobiTheta(q, z)$FSF lerchPhi(z, s, a) == lerchPhi(z, s, a)$FSF riemannZeta(z) == riemannZeta(z)$FSF charlierC(n, a, z) == charlierC(n, a, z)$FSF hermiteH(n, z) == hermiteH(n, z)$FSF jacobiP(n, a, b, z) == jacobiP(n, a, b, z)$FSF laguerreL(n, a, z) == laguerreL(n, a, z)$FSF meixnerM(n, b, c, z) == meixnerM(n, b, c, z)$FSF
if % has RetractableTo(Integer) then hypergeometricF(la, lb, x) == hypergeometricF(la, lb, x)$FSF meijerG(la, lb, lc, ld, x) == meijerG(la, lb, lc, ld, x)$FSF
x : % ^ y : % == x ^$CF y factorial x == factorial(x)$CF binomial(n, m) == binomial(n, m)$CF permutation(n, m) == permutation(n, m)$CF factorials x == factorials(x)$CF factorials(x, n) == factorials(x, n)$CF summation(x : %, n : Symbol) == summation(x, n)$CF summation(x : %, s : SegmentBinding %) == summation(x, s)$CF product(x : %, n : Symbol) == product(x, n)$CF product(x : %, s : SegmentBinding %) == product(x, s)$CF
erf x == erf(x)$LF erfi x == erfi(x)$LF Ei x == Ei(x)$LF Si x == Si(x)$LF Ci x == Ci(x)$LF Shi x == Shi(x)$LF Chi x == Chi(x)$LF li x == li(x)$LF dilog x == dilog(x)$LF fresnelS x == fresnelS(x)$LF fresnelC x == fresnelC(x)$LF integral(x : %, n : Symbol) == integral(x, n)$LF integral(x : %, s : SegmentBinding %) == integral(x, s)$LF
operator op == belong?(op)$AF => operator(op)$AF belong?(op)$EF => operator(op)$EF belong?(op)$CF => operator(op)$CF belong?(op)$LF => operator(op)$LF belong?(op)$FSF => operator(op)$FSF belong?(op)$FSD => operator(op)$FSD belong?(op)$ESD => operator(op)$ESD nullary? op and has?(op, SYMBOL) => operator(kernel(name op)$K) (n := arity op) case "failed" => operator name op operator(name op, n::NonNegativeInteger)
reduc(x, l) == for k in l repeat p := minPoly k x := evl(numer x, k, p) /$Rep evl(denom x, k, p) x
evl0(p, k) == numer univariate(p::Fraction(MP), k)$PolynomialCategoryQuotientFunctions(IndexedExponents K, K, R, MP, Fraction MP)
-- uses some operations from Rep instead of % in order not to -- reduce recursively during those operations. evl(p, k, m) == degree(p, k) < degree m => p::Fraction(MP) (((evl0(p, k) pretend SparseUnivariatePolynomial(%)) rem m) pretend SparseUnivariatePolynomial Fraction MP) (k::MP::Fraction(MP))
if R has GcdDomain then noalg? : SUP % -> Boolean
noalg? p == while p ~= 0 repeat not empty? algkernels kernels leadingCoefficient p => return false p := reductum p true
gcdPolynomial(p : SUP %, q : SUP %) == noalg? p and noalg? q => gcdPolynomial(p, q)$Rep gcdPolynomial(p, q)$GcdDomain_&(%)
factorPolynomial(x : SUP %) : Factored SUP % == uf := factor(x pretend SUP(Rep))$SupFractionFactorizer( IndexedExponents K, K, R, MP) uf pretend Factored SUP %
squareFreePolynomial(x : SUP %) : Factored SUP % == uf := squareFree(x pretend SUP(Rep))$SupFractionFactorizer( IndexedExponents K, K, R, MP) uf pretend Factored SUP %
if R is AN then -- this is to force the coercion R -> EXPR R to be used -- instead of the coercioon AN -> EXPR R which loops. -- simpler looking code will fail! MB 10/91 coerce(x : AN) : % == (monomial(x, 0$IndexedExponents(K))$MP)::%
if (R has RetractableTo Integer) then x : % ^ r : Q == x ^$AF r minPoly k == minPoly(k)$AF definingPolynomial x == definingPolynomial(x)$AF retract(x : %) : Q == retract(x)$Rep retractIfCan(x : %) : Union(Q, "failed") == retractIfCan(x)$Rep
if not(R is AN) then k2expr : KAN -> % smp2expr : SparseMultivariatePolynomial(Integer, KAN) -> % R2AN : R -> Union(AN, "failed") k2an : K -> Union(AN, "failed") smp2an : MP -> Union(AN, "failed")
coerce(x : AN) : % == smp2expr(numer x) / smp2expr(denom x) k2expr k == map(x +-> x::%, k)$ExpressionSpaceFunctions2(AN, %)
smp2expr p == map(k2expr, x +-> x::%, p )$PolynomialCategoryLifting(IndexedExponents KAN, KAN, Integer, SparseMultivariatePolynomial( Integer, KAN), %)
retractIfCan(x : %) : Union(AN, "failed") == ((n := smp2an numer x) case AN) and ((d := smp2an denom x) case AN) => (n::AN) / (d::AN) "failed"
R2AN r == (u := retractIfCan(r::%)@Union(Q, "failed")) case Q => u::Q::AN "failed"
k2an k == not(belong?(op := operator k)$AN) => "failed" is?(op, 'rootOf) => args := argument(k) a2 := args.2 k1u := retractIfCan(a2)@Union(K, "failed") k1u case "failed" => "failed" k1 := k1u::K s1u := retractIfCan(a2)@Union(Symbol, "failed") s1u case "failed" => "failed" s1 := s1u::Symbol a1 := args.1 denom(a1) ~= 1 => error "Bad argument to rootOf" eq := univariate(numer(a1), k1) eqa : SUP(AN) := 0 while eq ~= 0 repeat cc := leadingCoefficient(eq)::% ccu := retractIfCan(cc)@Union(AN, "failed") ccu case "failed" => return "failed" eqa := eqa + monomial(ccu::AN, degree eq) eq := reductum eq rootOf(eqa, s1)$AN arg : List(AN) := empty() for x in argument k repeat if (a := retractIfCan(x)@Union(AN, "failed")) case "failed" then return "failed" else arg := concat(a::AN, arg) (operator(op)$AN) reverse!(arg)
smp2an p == (x1 := mainVariable p) case "failed" => R2AN leadingCoefficient p up := univariate(p, k := x1::K) (t := k2an k) case "failed" => "failed" ans : AN := 0 while not ground? up repeat (c := smp2an leadingCoefficient up) case "failed" => return "failed" ans := ans + (c::AN) * (t::AN) ^ (degree up) up := reductum up (c := smp2an leadingCoefficient up) case "failed" => "failed" ans + c::AN
if R has ConvertibleTo InputForm then convert(x : %) : InputForm == convert(x)$Rep import from MakeUnaryCompiledFunction(%, %, %) eval(f : %, op : BasicOperator, g : %, x : Symbol) : % == eval(f, [op], [g], x) eval(f : %, ls : List BasicOperator, lg : List %, x : Symbol) == -- handle subscripted symbols by renaming -> eval -- -> renaming back llsym : List List Symbol := [variables g for g in lg] lsym : List Symbol := removeDuplicates concat llsym lsd : List Symbol := select (scripted?, lsym) empty? lsd => eval(f, ls, [compiledFunction(g, x) for g in lg]) ns : List Symbol := [new()$Symbol for i in lsd] lforwardSubs : List Equation % := [(i::%)= (j::%) for i in lsd for j in ns] lbackwardSubs : List Equation % := [(j::%)= (i::%) for i in lsd for j in ns] nlg : List % := [subst(g, lforwardSubs) for g in lg] res : % := eval(f, ls, [compiledFunction(g, x) for g in nlg]) subst(res, lbackwardSubs)
if R has PatternMatchable Integer then patternMatch(x : %, p : Pattern Integer, l : PatternMatchResult(Integer, %)) == patternMatch(x, p, l)$PatternMatchFunctionSpace(Integer, R, %)
if R has PatternMatchable Float then patternMatch(x : %, p : Pattern Float, l : PatternMatchResult(Float, %)) == patternMatch(x, p, l)$PatternMatchFunctionSpace(Float, R, %)
else -- ring R is not an integral domain
Rep := MP 0 == 0$Rep 1 == 1$Rep - x : % == -$Rep x n : Integer *x : % == n *$Rep x x : % * y : % == x *$Rep y x : % + y : % == x +$Rep y x : % = y : % == x =$Rep y smaller?(x : %, y : %) == smaller?(x, y)$Rep numer x == x@Rep coerce(p : MP) : % == p
coerce(p : Polynomial(R)) : % == poly_to_MP(p) pretend %
reducedSystem(m : Matrix %) : Matrix(R) == reducedSystem(m)$Rep
reducedSystem(m : Matrix %, v : Vector %): Record(mat : Matrix R, vec : Vector R) == reducedSystem(m, v)$Rep
if R has ConvertibleTo InputForm then convert(x : %) : InputForm == convert(x)$Rep
if R has PatternMatchable Integer then kintmatch : (K, Pattern Integer, PatternMatchResult(Integer, Rep)) -> PatternMatchResult(Integer, Rep)
kintmatch(k, p, l) == patternMatch(k, p, l pretend PatternMatchResult(Integer, %) )$PatternMatchKernel(Integer, %) pretend PatternMatchResult(Integer, Rep)
patternMatch(x : %, p : Pattern Integer, l : PatternMatchResult(Integer, %)) == patternMatch(x@Rep, p, l pretend PatternMatchResult(Integer, Rep), kintmatch )$PatternMatchPolynomialCategory(Integer, IndexedExponents K, K, R, Rep) pretend PatternMatchResult(Integer, %)
if R has PatternMatchable Float then kfltmatch : (K, Pattern Float, PatternMatchResult(Float, Rep)) -> PatternMatchResult(Float, Rep)
kfltmatch(k, p, l) == patternMatch(k, p, l pretend PatternMatchResult(Float, %) )$PatternMatchKernel(Float, %) pretend PatternMatchResult(Float, Rep)
patternMatch(x : %, p : Pattern Float, l : PatternMatchResult(Float, %)) == patternMatch(x@Rep, p, l pretend PatternMatchResult(Float, Rep), kfltmatch )$PatternMatchPolynomialCategory(Float, IndexedExponents K, K, R, Rep) pretend PatternMatchResult(Float, %)
else -- R is not even a ring if R has AbelianMonoid then import from ListToMap(K, %)
kereval : (K, List K, List %) -> % subeval : (K, List K, List %) -> %
Rep := FreeAbelianGroup K
0 == 0$Rep x : % + y : % == x +$Rep y x : % = y : % == x =$Rep y smaller?(x : %, y : %) == smaller?(x, y)$Rep coerce(k : K) : % == coerce(k)$Rep kernels(x : %) : List(K) == [f.gen for f in terms x] coerce(x : R) : % == (zero? x => 0; constantKernel(x)::%) retract(x : %) : R == (zero? x => 0; retNotUnit x) coerce(x : %) : OutputForm == coerce(x)$Rep kereval(k, lk, lv) == match(lk, lv, k, (x2 : K) : % +-> map(x1+->eval(x1, lk, lv), x2))
subeval(k, lk, lv) == match(lk, lv, k, (x : K) : % +-> kernel(operator x, [subst(a, lk, lv) for a in argument x]))
isPlus x == empty?(l := terms x) or empty? rest l => "failed" [t.exp *$Rep t.gen for t in l]$List(%)
isMult x == empty?(l := terms x) or not empty? rest l => "failed" t := first l [t.exp, t.gen]
eval(x : %, lk : List K, lv : List %) == _+/[t.exp * kereval(t.gen, lk, lv) for t in terms x]
subst(x : %, lk : List K, lv : List %) == _+/[t.exp * subeval(t.gen, lk, lv) for t in terms x]
retractIfCan(x:%):Union(R, "failed") == zero? x => 0 retNotUnitIfCan x
if R has AbelianGroup then -(x : %) == -$Rep x
-- else -- R is not an AbelianMonoid -- if R has SemiGroup then -- Rep := FreeGroup K -- 1 == 1$Rep -- x: % * y: % == x *$Rep y -- x: % = y: % == x =$Rep y -- coerce(k: K): % == k::Rep -- kernels(x : %) : List(K) == [f.gen for f in factors x] -- coerce(x: R): % == (one? x => 1; constantKernel x) -- retract(x: %): R == (one? x => 1; retNotUnit x) -- coerce(x: %): OutputForm == coerce(x)$Rep
-- retractIfCan(x:%):Union(R, "failed") == -- one? x => 1 -- retNotUnitIfCan x
-- if R has Group then inv(x: %): % == inv(x)$Rep
else -- R is nothing import from ListToMap(K, %)
Rep := K
smaller?(x : %, y : %) == smaller?(x, y)$Rep x : % = y : % == x =$Rep y coerce(k : K) : % == k kernels(x : %) : List(K) == [x pretend K] coerce(x : R) : % == constantKernel x retract(x : %) : R == retNotUnit x retractIfCan(x:%):Union(R, "failed") == retNotUnitIfCan x coerce(x : %) : OutputForm == coerce(x)$Rep
eval(x : %, lk : List K, lv : List %) == match(lk, lv, x pretend K, (x1 : K) : % +-> map(x2+->eval(x2, lk, lv), x1))
subst(x, lk, lv) == match(lk, lv, x pretend K, (x1 : K) : % +-> kernel(operator x1, [subst(a, lk, lv) for a in argument x1]))
if R has ConvertibleTo InputForm then convert(x : %) : InputForm == convert(x)$Rep
-- if R has PatternMatchable Integer then -- convert(x: %): Pattern(Integer) == convert(x)$Rep -- -- patternMatch(x: %, p: Pattern Integer, -- l: PatternMatchResult(Integer, %)) == -- patternMatch(x pretend K, p, l)$PatternMatchKernel(Integer, %) -- -- if R has PatternMatchable Float then -- convert(x: %): Pattern(Float) == convert(x)$Rep -- -- patternMatch(x: %, p: Pattern Float, -- l: PatternMatchResult(Float, %)) == -- patternMatch(x pretend K, p, l)$PatternMatchKernel(Float, %)
)abbrev package PAN2EXPR PolynomialAN2Expression ++ Author: Barry Trager ++ Date Created: 8 Oct 1991 ++ Description: This package provides a coerce from polynomials over ++ algebraic numbers to \spadtype{Expression AlgebraicNumber}. PolynomialAN2Expression() : Target == Implementation where EXPR ==> Expression(Integer) AN ==> AlgebraicNumber PAN ==> Polynomial AN SY ==> Symbol Target ==> with coerce : Polynomial AlgebraicNumber -> Expression(Integer) ++ coerce(p) converts the polynomial \spad{p} with algebraic number ++ coefficients to \spadtype{Expression Integer}. coerce : Fraction Polynomial AlgebraicNumber -> Expression(Integer) ++ coerce(rf) converts \spad{rf}, a fraction of polynomial \spad{p} with ++ algebraic number coefficients to \spadtype{Expression Integer}. Implementation ==> add coerce(p : PAN) : EXPR == map(x+->x::EXPR, x+->x::EXPR, p)$PolynomialCategoryLifting( IndexedExponents SY, SY, AN, PAN, EXPR) coerce(rf : Fraction PAN) : EXPR == numer(rf)::EXPR / denom(rf)::EXPR
)abbrev package EXPR2 ExpressionFunctions2 ++ Lifting of maps to Expressions ++ Author: Manuel Bronstein ++ Description: Lifting of maps to Expressions. ++ Date Created: 16 Jan 1989 ++ Date Last Updated: 22 Jan 1990 ExpressionFunctions2(R : Comparable, S : Comparable): Exports == Implementation where K ==> Kernel R F2 ==> FunctionSpaceFunctions2(R, Expression R, S, Expression S) E2 ==> ExpressionSpaceFunctions2(Expression R, Expression S)
Exports ==> with map : (R -> S, Expression R) -> Expression S ++ map(f, e) applies f to all the constants appearing in e.
Implementation == add if S has Ring and R has Ring then map(f, r) == map(f, r)$F2 else map(f, r) == map(x+->map(f, x), retract r)$E2
)abbrev package PMPREDFS FunctionSpaceAttachPredicates ++ Predicates for pattern-matching. ++ Author: Manuel Bronstein ++ Description: Attaching predicates to symbols for pattern matching. ++ Date Created: 21 Mar 1989 ++ Date Last Updated: 23 May 1990 ++ Keywords: pattern, matching. FunctionSpaceAttachPredicates(R, F, D) : Exports == Implementation where R : Comparable F : FunctionSpace R D : Type
K ==> Kernel F
Exports ==> with suchThat : (F, D -> Boolean) -> F ++ suchThat(x, foo) attaches the predicate foo to x; ++ error if x is not a symbol. suchThat : (F, List(D -> Boolean)) -> F ++ suchThat(x, [f1, f2, ..., fn]) attaches the predicate ++ f1 and f2 and ... and fn to x. ++ Error: if x is not a symbol.
Implementation ==> add import from AnyFunctions1(D -> Boolean)
PMPRED := '%pmpredicate
st : (K, List Any) -> F preds : K -> List Any mkk : BasicOperator -> F
suchThat(p : F, f : D -> Boolean) == suchThat(p, [f]) mkk op == kernel(op, empty()$List(F))
preds k == (u := property(operator k, PMPRED)) case "failed" => empty() (u::None) pretend List(Any)
-- st(k, l) == -- mkk assert(setProperty(copy operator k, PMPRED, -- concat(preds k, l) pretend None), string(new()$Symbol))
-- Looks fishy, but we try to preserve meaning st(k, l) == kk := copy operator k setProperty(kk, PMPRED, concat(preds k, l) pretend None) kernel(kk, empty()$List(F))
suchThat(p : F, l : List(D -> Boolean)) == retractIfCan(p)@Union(Symbol, "failed") case Symbol => st(retract(p)@K, [f::Any for f in l]) error "suchThat must be applied to symbols only"
)abbrev package PMASSFS FunctionSpaceAssertions ++ Assertions for pattern-matching ++ Author: Manuel Bronstein ++ Description: Attaching assertions to symbols for pattern matching; ++ Date Created: 21 Mar 1989 ++ Date Last Updated: 23 May 1990 ++ Keywords: pattern, matching. FunctionSpaceAssertions(R, F) : Exports == Implementation where R : Comparable F : FunctionSpace R
K ==> Kernel F PMOPT ==> '%pmoptional PMMULT ==> '%pmmultiple PMCONST ==> '%pmconstant
Exports ==> with -- assert : (F, String) -> F -- ++ assert(x, s) makes the assertion s about x. -- ++ Error: if x is not a symbol. constant : F -> F ++ constant(x) tells the pattern matcher that x should ++ match only the symbol 'x and no other quantity. ++ Error: if x is not a symbol. optional : F -> F ++ optional(x) tells the pattern matcher that x can match ++ an identity (0 in a sum, 1 in a product or exponentiation). ++ Error: if x is not a symbol. multiple : F -> F ++ multiple(x) tells the pattern matcher that x should ++ preferably match a multi-term quantity in a sum or product. ++ For matching on lists, multiple(x) tells the pattern matcher ++ that x should match a list instead of an element of a list. ++ Error: if x is not a symbol.
Implementation ==> add ass : (K, Symbol) -> F asst : (K, Symbol) -> F mkk : BasicOperator -> F
mkk op == kernel(op, empty()$List(F))
ass(k, s) == has?(op := operator k, s) => k::F mkk assert(copy op, s)
asst(k, s) == has?(op := operator k, s) => k::F mkk assert(op, s)
-- assert(x, s) == -- retractIfCan(x)@Union(Symbol, "failed") case Symbol => -- asst(retract(x)@K, s) -- error "assert must be applied to symbols only"
constant x == retractIfCan(x)@Union(Symbol, "failed") case Symbol => ass(retract(x)@K, PMCONST) error "constant must be applied to symbols only"
optional x == retractIfCan(x)@Union(Symbol, "failed") case Symbol => ass(retract(x)@K, PMOPT) error "optional must be applied to symbols only"
multiple x == retractIfCan(x)@Union(Symbol, "failed") case Symbol => ass(retract(x)@K, PMMULT) error "multiple must be applied to symbols only"
)abbrev package PMPRED AttachPredicates ++ Predicates for pattern-matching, unused ++ Author: Manuel Bronstein ++ Description: Attaching predicates to symbols for pattern matching. ++ Date Created: 21 Mar 1989 ++ Date Last Updated: 23 May 1990 ++ Keywords: pattern, matching. AttachPredicates(D : Type) : Exports == Implementation where FE ==> Expression Integer
Exports ==> with suchThat : (Symbol, D -> Boolean) -> FE ++ suchThat(x, foo) attaches the predicate foo to x. suchThat : (Symbol, List(D -> Boolean)) -> FE ++ suchThat(x, [f1, f2, ..., fn]) attaches the predicate ++ f1 and f2 and ... and fn to x.
Implementation ==> add import from FunctionSpaceAttachPredicates(Integer, FE, D)
suchThat(p : Symbol, f : D -> Boolean) == suchThat(p::FE, f) suchThat(p : Symbol, l : List(D -> Boolean)) == suchThat(p::FE, l)
)abbrev package PMASS PatternMatchAssertions ++ Assertions for pattern-matching, unused ++ Author: Manuel Bronstein ++ Description: Attaching assertions to symbols for pattern matching. ++ Date Created: 21 Mar 1989 ++ Date Last Updated: 23 May 1990 ++ Keywords: pattern, matching. PatternMatchAssertions() : Exports == Implementation where FE ==> Expression Integer
Exports ==> with -- assert : (Symbol, String) -> FE -- ++ assert(x, s) makes the assertion s about x. constant : Symbol -> FE ++ constant(x) tells the pattern matcher that x should ++ match only the symbol 'x and no other quantity. optional : Symbol -> FE ++ optional(x) tells the pattern matcher that x can match ++ an identity (0 in a sum, 1 in a product or exponentiation).; multiple : Symbol -> FE ++ multiple(x) tells the pattern matcher that x should ++ preferably match a multi-term quantity in a sum or product. ++ For matching on lists, multiple(x) tells the pattern matcher ++ that x should match a list instead of an element of a list.
Implementation ==> add import from FunctionSpaceAssertions(Integer, FE)
constant x == constant(x::FE) multiple x == multiple(x::FE) optional x == optional(x::FE) -- assert(x, s) == assert(x::FE, s)
)abbrev domain HACKPI Pi ++ Expressions in %pi only ++ Author: Manuel Bronstein ++ Description: ++ Symbolic fractions in %pi with integer coefficients; ++ The point for using Pi as the default domain for those fractions ++ is that Pi is coercible to the float types, and not Expression. ++ Date Created: 21 Feb 1990 ++ Date Last Updated: 12 Mai 1992 Pi() : Exports == Implementation where PZ ==> Polynomial Integer UP ==> SparseUnivariatePolynomial Integer RF ==> Fraction UP
Exports ==> Join(Field, CharacteristicZero, RetractableTo Integer, RetractableTo Fraction Integer, RealConstant, CoercibleTo DoubleFloat, CoercibleTo Float, ConvertibleTo RF, ConvertibleTo InputForm) with pi : () -> % ++ pi() returns the symbolic %pi. Implementation ==> RF add Rep := RF
sympi := '%pi
p2sf : UP -> DoubleFloat p2f : UP -> Float p2o : UP -> OutputForm p2i : UP -> InputForm p2p : UP -> PZ
pi() == (monomial(1, 1)$UP :: RF) pretend % convert(x : %) : RF == x pretend RF convert(x : %) : Float == x::Float convert(x : %) : DoubleFloat == x::DoubleFloat coerce(x : %) : DoubleFloat == p2sf(numer x) / p2sf(denom x) coerce(x : %) : Float == p2f(numer x) / p2f(denom x) p2o p == outputForm(p, sympi::OutputForm) p2i p == convert p2p p
p2p p == ans : PZ := 0 while p ~= 0 repeat ans := ans + monomial(leadingCoefficient(p)::PZ, sympi, degree p) p := reductum p ans
coerce(x : %) : OutputForm == (r := retractIfCan(x)@Union(UP, "failed")) case UP => p2o(r::UP) p2o(numer x) / p2o(denom x)
convert(x : %) : InputForm == (r := retractIfCan(x)@Union(UP, "failed")) case UP => p2i(r::UP) p2i(numer x) / p2i(denom x)
p2sf p == map((x : Integer) : DoubleFloat+->x::DoubleFloat, p)$SparseUnivariatePolynomialFunctions2(Integer, DoubleFloat) (pi()$DoubleFloat)
p2f p == map((x : Integer) : Float+->x::Float, p)$SparseUnivariatePolynomialFunctions2(Integer, Float) (pi()$Float)
)abbrev package PICOERCE PiCoercions ++ Coercions from %pi to symbolic or numeric domains ++ Author: Manuel Bronstein ++ Description: ++ Provides a coercion from the symbolic fractions in %pi with ++ integer coefficients to any Expression type. ++ Date Created: 21 Feb 1990 ++ Date Last Updated: 21 Feb 1990 PiCoercions(R : Join(Comparable, IntegralDomain)) : with coerce : Pi -> Expression R ++ coerce(f) returns f as an Expression(R). == add p2e : SparseUnivariatePolynomial Integer -> Expression R
coerce(x : Pi) : Expression(R) == f := convert(x)@Fraction(SparseUnivariatePolynomial Integer) p2e(numer f) / p2e(denom f)
p2e p == map((x1 : Integer) : Expression(R)+->x1::Expression(R), p)$SparseUnivariatePolynomialFunctions2(Integer, Expression R) (pi()$Expression(R))
)abbrev package ELINSOL ExpressionLinearSolve ++ Author: Waldek Hebisch ++ Description: Solver for linear systems represented as list ++ of expressions. More efficient than using solve because ++ it does not check that system really is linear. ExpressionLinearSolve(R : Join(IntegralDomain, Comparable), F : FunctionSpace(R)) : Exports == Implementation where K ==> Kernel(F) MP ==> SparseMultivariatePolynomial(R, K) Exports ==> with lin_sol : (List(F), List Symbol) -> Union(List(F), "failed") ++ lin_sol(eql, vl) solves system of equations eql for ++ variables in vl. Equations must be linear in variables ++ from vl. Implementation ==> add
lin_coeff(x : MP, v : K) : F == ux := univariate(x, v) d := degree(ux) d < 1 => 0 d > 1 => error "lin_coeff: x is nonlinear" leadingCoefficient(ux)::F
-- works only if numer(x) is linear in v from vl F_to_LF(x : F, vl : List(K)) : List(F) == nx := numer(x) res0 := [lin_coeff(nx, v) for v in vl] ml := [numer(c)*monomial(1, v, 1)$MP for v in vl for c in res0] nx1 := reduce(_+, ml, 0) nx0 := nx - nx1 reduce(max, [degree(nx0, v) for v in vl]@List(Integer)) > 0 => error "x is nonlinear in vl" cons(nx0::F, res0)
lin_sol(eql : List(F), vl : List Symbol) : Union(List(F), "failed") == coefk := [retract(c::F)@K for c in vl] eqll := [F_to_LF(p, coefk) for p in eql] rh : Vector(F) := -vector([first(ll) for ll in eqll])$Vector(F) eqm := matrix([rest(ll) for ll in eqll])$Matrix(F) ss := solve(eqm, rh)$LinearSystemMatrixPackage1(F) ss.particular case "failed" => "failed" parts((ss.particular)::Vector(F))
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-- SPAD files for the functional world should be compiled in the -- following order: -- -- op kl fspace algfunc elemntry combfunc EXPR
spad
   Compiling FriCAS source code from file 
      /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/8992563038069002711-25px001.spad
      using old system compiler.
   EXPR abbreviates domain Expression 
------------------------------------------------------------------------
   initializing NRLIB EXPR for Expression 
   compiling into NRLIB EXPR 
   importing KernelFunctions2(R,$)
   compiling exported belong? : BasicOperator -> Boolean
      EXPR;belong?;BoB;1 is replaced by QUOTET 
Time: 0.05 SEC.
compiling local retNotUnit : $ -> R Time: 0 SEC.
compiling local retNotUnitIfCan : $ -> Union(R,failed) Time: 0 SEC.
****** Domain: R already in scope augmenting R: (IntegralDomain) ****** Domain: $ already in scope augmenting $: (AlgebraicallyClosedFunctionSpace R) ****** Domain: $ already in scope augmenting $: (TranscendentalFunctionCategory) ****** Domain: $ already in scope augmenting $: (CombinatorialOpsCategory) ****** Domain: $ already in scope augmenting $: (LiouvillianFunctionCategory) ****** Domain: $ already in scope augmenting $: (SpecialFunctionCategory) augmenting $: (SIGNATURE $ reduce ($ $)) augmenting $: (SIGNATURE $ number? ((Boolean) $)) augmenting $: (SIGNATURE $ simplifyPower ($ $ (Integer))) augmenting $: (SIGNATURE $ setSimplifyDenomsFlag ((Boolean) (Boolean))) augmenting $: (SIGNATURE $ getSimplifyDenomsFlag ((Boolean))) compiling exported operator : BasicOperator -> BasicOperator Time: 0.06 SEC.
processing macro definition SPCH ==> SparsePolynomialCoercionHelpers(R,Symbol,Kernel $) ****** Domain: R already in scope augmenting R: (Ring) compiling local poly_to_MP : Polynomial R -> SparseMultivariatePolynomial(R,Kernel $) Time: 0.01 SEC.
****** Domain: R already in scope augmenting R: (IntegralDomain) ****** Domain: $ already in scope augmenting $: (AlgebraicallyClosedFunctionSpace R) ****** Domain: $ already in scope augmenting $: (TranscendentalFunctionCategory) ****** Domain: $ already in scope augmenting $: (CombinatorialOpsCategory) ****** Domain: $ already in scope augmenting $: (LiouvillianFunctionCategory) ****** Domain: $ already in scope augmenting $: (SpecialFunctionCategory) augmenting $: (SIGNATURE $ reduce ($ $)) augmenting $: (SIGNATURE $ number? ((Boolean) $)) augmenting $: (SIGNATURE $ simplifyPower ($ $ (Integer))) augmenting $: (SIGNATURE $ setSimplifyDenomsFlag ((Boolean) (Boolean))) augmenting $: (SIGNATURE $ getSimplifyDenomsFlag ((Boolean))) compiling exported Zero : () -> $ Time: 0.08 SEC.
compiling exported One : () -> $ Time: 0 SEC.
compiling exported one? : $ -> Boolean Time: 0 SEC.
compiling exported zero? : $ -> Boolean Time: 0 SEC.
compiling exported - : $ -> $ Time: 0 SEC.
compiling exported * : (Integer,$) -> $ Time: 0 SEC.
compiling exported coerce : Integer -> $ Time: 0 SEC.
compiling exported * : ($,$) -> $ Time: 0.01 SEC.
compiling exported + : ($,$) -> $ Time: 0 SEC.
compiling exported - : ($,$) -> $ Time: 0.01 SEC.
compiling exported / : ($,$) -> $ Time: 0.01 SEC.
compiling exported number? : $ -> Boolean ****** Domain: R already in scope augmenting R: (RetractableTo (Integer)) Time: 0.01 SEC.
compiling exported simplifyPower : ($,Integer) -> $ ****** comp fails at level 9 with expression: ****** error in function simplifyPower
(SEQ (LET (|:| |k| (|List| (|Kernel| $))) (|kernels| |x|)) (LET (|:| #1=#:G661 (|Boolean|)) (|is?| |x| '|%power|)) (|exit| 1 (IF #1# (SEQ (LET (|:| |args| (|List| $)) (|argument| (|first| |k|))) (SEQ (LET (|:| #2=#:G659 (|Boolean|)) (= (|#| |args|) 2)) (|exit| 1 (IF #2# |noBranch| (|exit| 2 (|error| "Too many arguments to ^"))))) (LET (|:| #3=#:G660 (|Boolean|)) (|number?| (|args| 1))) (|exit| 1 (IF #3# (^ (|reduc| ((|Sel| |Rep| ^) (|args| 1) |n|) | << | (|algtower| (|args| 1)) | >> |) (|args| 2)) (^ (|first| |args|) (* |n| (|second| |args|)))))) (|reduc| ((|Sel| |Rep| ^) |x| |n|) (|algtower| |x|))))) ****** level 9 ****** $x:= (algtower (args (One))) $m:= $EmptyMode $f:= ((((#:G660 # #) (#:G659 # #) (|args| # #) (|last| #) ...) ((|poly_to_MP| #) (* #) (+ #) (- #) ...)))
>> Apparent user error: NoValueMode is an unknown mode