login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox Experimenting revision 1 of 2

1 2
Editor: xlma
Time: 2010/04/18 20:19:58 GMT-7
Note:

changed:
-
\begin{axiom}


c(x,y,z)==  x**2 - y + z

eqns := [x**2 - y + z,x**2*z + x**4 - b*y, y**2 *z - a - b*x]

solve(eqns,[x,y,z])


c:=[2*a^2+x=8,2+4*a*x=4]
solve(c,[a,x])
radicalSolve(c)
radicalSolve(c,[a,x])








    \end{axiom}

axiom
c(x,y,z)==  x**2 - y + z
Type: Void
axiom
eqns := [x**2 - y + z,x**2*z + x**4 - b*y, y**2 *z - a - b*x]

\label{eq1}\left[{z - y +{x^2}}, \:{{{x^2}\  z}-{b \  y}+{x^4}}, \:{{{y^2}\  z}-{b \  x}- a}\right](1)
Type: List(Polynomial(Integer))
axiom
solve(eqns,[x,y,z])

\label{eq2}\begin{array}{@{}l}
\displaystyle
\left[{\left[{x = -{a \over b}}, \:{y = 0}, \:{z = -{{a^2}\over{b^2}}}\right]}, \: \right.
\
\
\displaystyle
\left.{
\begin{array}{@{}l}
\displaystyle
\left[{x ={{{z^3}+{2 \  b \ {z^2}}+{{b^2}\  z}- a}\over b}}, \:{y ={z + b}}, \: \right.
\
\
\displaystyle
\left.{
\begin{array}{@{}l}
\displaystyle
{{z^6}+{4 \  b \ {z^5}}+{6 \ {b^2}\ {z^4}}+{{\left({4 \ {b^3}}-{2 \  a}\right)}\ {z^3}}+{{\left({b^4}-{4 \  a \  b}\right)}\ {z^2}}-{2 \  a \ {b^2}\  z}-{b^3}+{a^2}}= 
\
\
\displaystyle
0 
(2)
Type: List(List(Equation(Fraction(Polynomial(Integer)))))
axiom
c:=[2*a^2+x=8,2+4*a*x=4]
Function definition for c is being overwritten.

\label{eq3}\left[{{x +{2 \ {a^2}}}= 8}, \:{{{4 \  a \  x}+ 2}= 4}\right](3)
Type: List(Equation(Polynomial(Integer)))
axiom
solve(c,[a,x])

\label{eq4}\left[{\left[{a ={-{x^2}+{8 \  x}}}, \:{{{2 \ {x^3}}-{{16}\ {x^2}}+ 1}= 0}\right]}\right](4)
Type: List(List(Equation(Fraction(Polynomial(Integer)))))
axiom
radicalSolve(c)

\label{eq5}\begin{array}{@{}l}
\displaystyle
\left[{
\begin{array}{@{}l}
\displaystyle
\left[{
\begin{array}{@{}l}
\displaystyle
x ={{{{\left({{96}\ {\sqrt{- 3}}}-{96}\right)}\ {\sqrt{3}}\ {{\root{3}\of{{-{3 \ {\sqrt{3}}}+{\sqrt{-{4069}}}}\over{{24}\ {\sqrt{3}}}}}^2}}+{{\left({{\left(-{9 \ {\sqrt{- 3}}}- 9 \right)}\ {\sqrt{3}}}+{3 \ {\sqrt{-{4069}}}\ {\sqrt{- 3}}}+{3 \ {\sqrt{-{4069}}}}\right)}\ {\root{3}\of{{-{3 \ {\sqrt{3}}}+{\sqrt{-{4069}}}}\over{{24}\ {\sqrt{3}}}}}}-{{256}\ {\sqrt{3}}}}\over{{\left({{36}\ {\sqrt{- 3}}}-{36}\right)}\ {\sqrt{3}}\ {{\root{3}\of{{-{3 \ {\sqrt{3}}}+{\sqrt{-{4069}}}}\over{{24}\ {\sqrt{3}}}}}^2}}}
(5)
Type: List(List(Equation(Expression(Integer))))
axiom
radicalSolve(c,[a,x])

\label{eq6}\begin{array}{@{}l}
\displaystyle
\left[{
\begin{array}{@{}l}
\displaystyle
\left[{
\begin{array}{@{}l}
\displaystyle
a ={{{{\left({{\left({9 \ {\sqrt{- 3}}}- 9 \right)}\ {\sqrt{3}}}-{3 \ {\sqrt{-{4069}}}\ {\sqrt{- 3}}}+{3 \ {\sqrt{-{4069}}}}\right)}\ {\root{3}\of{{{{2
021}\ {\sqrt{3}}}+{9 \ {\sqrt{-{4069}}}}}\over{{108}\ {\sqrt{3}}}}}}+{{\left({{24}\ {\sqrt{- 3}}}+{24}\right)}\ {\sqrt{3}}}-{8 \ {\sqrt{-{4069}}}\ {\sqrt{- 3}}}-{8 \ {\sqrt{-{4069}}}}}\over{{72}\ {\sqrt{3}}\ {{\root{3}\of{{{{2
021}\ {\sqrt{3}}}+{9 \ {\sqrt{-{4069}}}}}\over{{108}\ {\sqrt{3}}}}}^2}}}
(6)
Type: List(List(Equation(Expression(Integer))))