fricas
(1) -> )lib FSPECX
FunctionalSpecialFunction is now explicitly exposed in frame initial
FunctionalSpecialFunction will be automatically loaded when needed
from /var/aw/var/LatexWiki/FSPECX.NRLIB/FSPECX
spad
)abbrev package EFSTRUX ElementaryFunctionStructurePackage
++ Risch structure theorem
++ Author: Manuel Bronstein, Waldek Hebisch
++ Date Created: 1987
++ Date Last Updated: 9 October 2006
++ Description:
++ ElementaryFunctionStructurePackage provides functions to test the
++ algebraic independence of various elementary functions, using the
++ Risch structure theorem (real and complex versions).
++ It also provides transformations on elementary functions
++ which are not considered simplifications.
++ Keywords: elementary, function, structure.
ElementaryFunctionStructurePackage(R, F) : Exports == Implementation where
R : Join(IntegralDomain, Comparable, RetractableTo Integer,
LinearlyExplicitRingOver Integer)
F : Join(AlgebraicallyClosedField, TranscendentalFunctionCategory,
FunctionSpace R)
B ==> Boolean
N ==> NonNegativeInteger
Z ==> Integer
Q ==> Fraction Z
SY ==> Symbol
K ==> Kernel F
UP ==> SparseUnivariatePolynomial F
SMP ==> SparseMultivariatePolynomial(R, K)
REC ==> Record(func : F, kers : List K, vals : List F)
U ==> Union(vec : Vector Q, func : F, fail : Boolean)
POWER ==> '%power
NTHR ==> 'nthRoot
Exports ==> with
normalize : F -> F
++ normalize(f) rewrites \spad{f} using the least possible number of
++ real algebraically independent kernels.
normalize : (F, SY) -> F
++ normalize(f, x) rewrites \spad{f} using the least possible number of
++ real algebraically independent kernels involving \spad{x}.
rischNormalize : (F, SY) -> REC
++ rischNormalize(f, x) returns \spad{[g, [k1, ..., kn], [h1, ..., hn]]}
++ such that \spad{g = normalize(f, x)} and each \spad{ki} was
++ rewritten as \spad{hi} during the normalization.
rischNormalize : (F, List SY) -> REC
++ rischNormalize(f, lx) returns \spad{[g, [k1, ..., kn], [h1, ..., hn]]}
++ such that \spad{g = normalize(f, lx)} and each \spad{ki} was
++ rewritten as \spad{hi} during the normalization.
realElementary : F -> F
++ realElementary(f) rewrites \spad{f} in terms of the 4 fundamental real
++ transcendental elementary functions: \spad{log, exp, tan, atan}.
realLiouvillian : F -> F
++ realLiouvillian(f) rewrites \spad{f} elementary kernels of f in
++ terms 4 fundamental real elementary functions: \spad{log, exp, tan,
++ atan}. Additionally, it rewrites Liouvillian functions as
++ indefinite integrals to support better normalization.
realLiouvillian : (F, SY) -> F
++ realLiouvillian(f, x) rewrites \spad{f} elementary kernels of f in
++ terms 4 fundamental real elementary functions: \spad{log, exp, tan,
++ atan}. Additionally, it rewrites Liouvillian functions of x as
++ indefinite integrals to support better normalization.
realElementary : (F, SY) -> F
++ realElementary(f, x) rewrites the kernels of \spad{f} involving \spad{x}
++ in terms of the 4 fundamental real
++ transcendental elementary functions: \spad{log, exp, tan, atan}.
validExponential : (List K, F, SY) -> Union(F, "failed")
++ validExponential([k1, ..., kn], f, x) returns \spad{g} if \spad{exp(f)=g}
++ and \spad{g} involves only \spad{k1...kn}, and "failed" otherwise.
rootNormalize : (F, K) -> F
++ rootNormalize(f, k) returns \spad{f} rewriting either \spad{k} which
++ must be an nth-root in terms of radicals already in \spad{f}, or some
++ radicals in \spad{f} in terms of \spad{k}.
rmap : (K -> F, F) -> F
++ rmap(f, e) rewrites e replacing each kernel k in e by f(k)
tanQ : (Q, F) -> F
++ tanQ(q, a) is a local function with a conditional implementation.
irootDep : K -> U
++ irootDep(k) is a local function with a conditional implementation.
Implementation ==> add
import from TangentExpansions F
import from IntegrationTools(R, F)
import from IntegerLinearDependence F
import from AlgebraicManipulations(R, F)
import from InnerCommonDenominator(Z, Q, Vector Z, Vector Q)
P ==> SparseMultivariatePolynomial(R, K)
HTRIG := 'htrig
TRIG := 'trig
k2Elem : (K, List SY) -> F
realElem : (F, List SY) -> F
rootDep : (List K, K) -> U
findQRelation : (List SY, List F, F) -> U
findRelation : (List SY, List SY, List K, K) -> U
factdeprel : (List K, K) -> U
toR : (List K, F) -> List K
toY : List K -> List F
toZ : List K -> List F
toU : List K -> List F
toV : List K -> List F
ktoY : K -> F
ktoZ : K -> F
ktoU : K -> F
ktoV : K -> F
gdCoef? : (Q, Vector Q) -> Boolean
goodCoef : (Vector Q, List K, SY) ->
Union(Record(index:Z, ker:K), "failed")
tanRN : (Q, K) -> F
localnorm : F -> F
rooteval : (F, List K, K, Q) -> REC
logeval : (F, List K, K, Vector Q) -> REC
expeval : (F, List K, K, Vector Q) -> REC
taneval : (F, List K, K, Vector Q) -> REC
ataneval : (F, List K, K, Vector Q) -> REC
depeval : (F, List K, K, Vector Q) -> REC
expnosimp : (F, List K, K, Vector Q, List F, F) -> REC
tannosimp : (F, List K, K, Vector Q, List F, F) -> REC
rtNormalize : F -> F
rootNormalize0 : F -> REC
rootKernelNormalize : (F, List K, K) -> Union(REC, "failed")
tanSum : (F, List F) -> F
comb? := F has CombinatorialOpsCategory
mpiover2 : F := pi()$F / (-2::F)
realElem(f, l) == rmap(k +-> k2Elem(k, l), f)
realElementary(f, x) == realElem(f, [x])
realElementary f == realElem(f, variables f)
k_to_liou : K -> F
k_to_liou1 : (K, SY) -> F
realLiouvillian(f) == rmap(k_to_liou, f)
realLiouvillian(f, x) == rmap((k : K) : F +-> k_to_liou1(k, x), f)
toY ker == [func for k in ker | (func := ktoY k) ~= 0]
toZ ker == [func for k in ker | (func := ktoZ k) ~= 0]
toU ker == [func for k in ker | (func := ktoU k) ~= 0]
toV ker == [func for k in ker | (func := ktoV k) ~= 0]
rtNormalize f == rootNormalize0(f).func
toR(ker, x) == select(s +-> is?(s, NTHR) and first argument(s) = x, ker)
-- total Wirtinger derivative allows expressions containing conjugate to be normalized
-- Wirtinger derivatives: wdiff(f,x) and wdiff(f,conjugate(x))
wdiff(ex:F,z:K):F ==
eval(differentiate(eval(ex,[z],[coerce('%conjugate)]),'%conjugate),[kernel('%conjugate)],[z::F])
totalDifferentiate(f:F,x:SY):F == wdiff(f,kernel(x))+sqrt(-1)*wdiff(f,kernels(conjugate(coerce x)$FunctionalSpecialFunction(R, F))(1) )
if R has GcdDomain then
tanQ(c, x) ==
tanNa(rootSimp zeroOf tanAn(x, denom(c)::PositiveInteger), numer c)
else
tanQ(c, x) ==
tanNa(zeroOf tanAn(x, denom(c)::PositiveInteger), numer c)
-- tanSum(c, [a1, ..., an]) returns f(c, a1, ..., an) such that
-- if ai = tan(ui) then f(c, a1, ..., an) = tan(c + u1 + ... + un).
-- MUST BE CAREFUL FOR WHEN c IS AN ODD MULTIPLE of pi/2
tanSum(c, l) ==
k := c / mpiover2 -- k = - 2 c / pi, check for odd integer
-- tan((2n+1) pi/2 x) = - 1 / tan x
(r := retractIfCan(k)@Union(Z, "failed")) case Z and odd?(r::Z) =>
- inv tanSum l
tanSum concat(tan c, l)
rootNormalize0 f ==
ker := select!(x +-> is?(x, NTHR) and empty? variables first argument x,
tower f)$List(K)
empty? ker => [f, empty(), empty()]
(n := (#ker)::Z - 1) < 1 => [f, empty(), empty()]
for i in 1..n for kk in rest ker repeat
(u := rootKernelNormalize(f, first(ker, i), kk)) case REC =>
rec := u::REC
rn := rootNormalize0(rec.func)
return [rn.func, concat(rec.kers, rn.kers), concat(rec.vals, rn.vals)]
[f, empty(), empty()]
findQRelation(lv : List Symbol, lpar : List Symbol, lk : List F, _
ker : F) : U ==
null lk => [true]
isconstant := true
m := #lv
lvv := lv
n := #lk
v := new(m, 0)$(Vector F)
for i in 1..m for var in lv repeat
v(i) := totalDifferentiate(ker, var)
if isconstant then
isconstant := v(i) = 0
if isconstant then
m := #lpar
lvv := lpar
v := new(m, 0)$(Vector F)
for i in 1..m for var in lpar repeat
v(i) := totalDifferentiate(ker, var)
if isconstant then
isconstant := v(i) = 0
isconstant =>
print(ker::OutputForm)$OutputForm
error "Hidden constant detected"
mat := new(m, n, 0)$(Matrix F)
for i in 1..m for var in lvv repeat
for j in 1..n for k in lk repeat
mat(i, j) := totalDifferentiate(k, var)
(u := particularSolutionOverQ(mat, v)) case Vector(Q) => [u::Vector(Q)]
[true]
-- This is only correct if Schanuel Conjecture is true, otherwise
-- we may miss some relations.
findLinearRelation1(lk : List F, ker : F) : U ==
null lk => [true]
n := #lk
mat := new(1, n, 0)$(Matrix F)
v := new(1, ker)$(Vector F)
for j in 1..n for k in lk repeat
if null(variables(k)) then
mat(1, j) := k
else
mat(1, j) := 0::F
(u := particularSolutionOverQ(mat, v)) case Vector(Q) => [u::Vector(Q)]
[true]
ALGOP := '%alg
transkers(x : List K) : List K ==
[k for k in x | not(has?(operator k, ALGOP))]
ktoQ(ker : K) : Q ==
is?(ker, 'log) and F has RetractableTo Q =>
z : F := argument(ker).1
qu := retractIfCan(z)@Union(Q, "failed")
qu case Q => qu::Q
1
1
toQ(lk : List K) : List Q ==
[ktoQ(k) for k in lk | is?(k, 'log) or is?(k, 'exp)]
import from MultiplicativeDependence()
findLinearRelation2(lk : List K, lz : List F, ker : K) : U ==
z : F := argument(ker).1
zkers := transkers(kernels(z))
empty?(zkers) =>
-- Algebraic case, check for dependencies between logarithms
-- of rational numbers (we should do better)
q := ktoQ(ker)
not(q = 1 or q = -1) =>
(u := logDependenceQ([toQ (lk)], q)) case Vector(Q) => [u::Vector(Q)]
[true]
kerF := ker :: F
F is Expression(R) and R has ConvertibleTo(Float) _
and R has IntegralDomain and R has OrderedSet =>
m := #lz
for z1 in lz for i in 1..m repeat
Fratio : F := kerF/log(z1)
(fratio := numericIfCan(Fratio, 20)$Numeric(R) _
) case Float =>
qratio := rationalApproximation(fratio::Float, 8)
nd : Integer
nq : Integer
(qratio = 0 or
abs(fratio/(qratio::Float)-1.0) > 1.0e-16) _
or (abs(nq := numer(qratio)) > 100) _
or (abs(nd := denom(qratio)) > 100) => "iterate"
kertond := (argument(ker).1)^nd
nq > 0 =>
lz1tonq := z1^nq
(kertond = lz1tonq) =>
vv := zero(m)$Vector(Q)
qsetelt!(vv, i, qratio)
return [vv]
lz1tonq := (z1)^(-nq)
kertond*lz1tonq = 1 =>
vv := zero(m)$Vector(Q)
qsetelt!(vv, i, qratio)
return [vv]
[true]
[true]
lpars0 : List K := transkers(lk)
lpars1 : List Symbol := [new()$Symbol for k in lpars0]
lpars1f : List F := [kernel(s)::F for s in lpars1]
ly : List F
nz : F
if is?(ker, 'log) then
ly := [log(eval(x, lpars0, lpars1f)) for x in lz]
nz := log(eval(z, lpars0, lpars1f))
else
not(is?(ker, 'atan)) =>
error "findLinearRelation2: kernel should be log or atan"
ly := [atan(eval(x, lpars0, lpars1f)) for x in lz]
nz := atan(eval(z, lpars0, lpars1f))
findQRelation([], lpars1, ly, nz)
findRelation(lv : List Symbol, lpar : List Symbol, lk : List K, _
ker : K) : U ==
is?(ker, 'log) or is?(ker, 'exp) =>
null(variables(ker::F)) =>
is?(ker, 'exp) => findLinearRelation1(toY lk, ktoY ker)
findLinearRelation2(lk, toZ lk, ker)
findQRelation(lv, lpar, toY lk, ktoY ker)
is?(ker, 'atan) or is?(ker, 'tan) =>
null(variables(ker::F)) =>
is?(ker, 'tan) => findLinearRelation1(toU lk, ktoU ker)
findLinearRelation2(lk, toV lk, ker)
findQRelation(lv, lpar, toU lk, ktoU ker)
is?(ker, NTHR) => rootDep(lk, ker)
comb? and is?(ker, 'factorial) =>
factdeprel([x for x in lk | is?(x, 'factorial) and x ~= ker],
ker)
[true]
ktoY k ==
is?(k, 'log) => k::F
is?(k, 'exp) => first argument k
0
ktoZ k ==
is?(k, 'log) => first argument k
is?(k, 'exp) => k::F
0
ktoU k ==
is?(k, 'atan) => k::F
is?(k, 'tan) => first argument k
0
ktoV k ==
is?(k, 'tan) => k::F
is?(k, 'atan) => first argument k
0
smp_map(f : K -> F, p : SMP) : F ==
map(f, y +-> y::F, p)$PolynomialCategoryLifting(
IndexedExponents K, K, R, SMP, F)
rmap(f, e) == smp_map(f, numer e)/smp_map(f, denom e)
LF ==> LiouvillianFunction(R, F)
opint : BasicOperator := operator(operator('%iint)$CommonOperators)$LF
k2Elem0(k : K, op : BasicOperator, args : List F) : F ==
ez, iez, tz2 : F
z := first args
is?(op, POWER) => (zero? z => 0; exp(last(args) * log z))
is?(op, 'cot) => inv tan z
is?(op, 'acot) => atan inv z
is?(op, 'asin) => atan(z / sqrt(1 - z^2))
is?(op, 'acos) => atan(sqrt(1 - z^2) / z)
is?(op, 'asec) => atan sqrt(z^2 - 1)
is?(op, 'acsc) => atan inv sqrt(z^2 - 1)
is?(op, 'asinh) => log(sqrt(1 + z^2) + z)
is?(op, 'acosh) => log(sqrt(z^2 - 1) + z)
is?(op, 'atanh) => log((z + 1) / (1 - z)) / (2::F)
is?(op, 'acoth) => log((z + 1) / (z - 1)) / (2::F)
is?(op, 'asech) => log((inv z) + sqrt(inv(z^2) - 1))
is?(op, 'acsch) => log((inv z) + sqrt(1 + inv(z^2)))
is?(op, '%paren) or is?(op, '%box) =>
empty? rest args => z
k::F
if has?(op, HTRIG) then iez := inv(ez := exp z)
is?(op, 'sinh) => (ez - iez) / (2::F)
is?(op, 'cosh) => (ez + iez) / (2::F)
is?(op, 'tanh) => (ez - iez) / (ez + iez)
is?(op, 'coth) => (ez + iez) / (ez - iez)
is?(op, 'sech) => 2 * inv(ez + iez)
is?(op, 'csch) => 2 * inv(ez - iez)
if has?(op, TRIG) then tz2 := tan(z / (2::F))
is?(op, 'sin) => 2 * tz2 / (1 + tz2^2)
is?(op, 'cos) => (1 - tz2^2) / (1 + tz2^2)
is?(op, 'sec) => (1 + tz2^2) / (1 - tz2^2)
is?(op, 'csc) => (1 + tz2^2) / (2 * tz2)
op args
do_int(op : BasicOperator, args : List(F)) : F ==
kf1 := op args
vars := variables(kf1)
vfs := [v::F for v in vars]
dvs := [realLiouvillian(D(kf1, v)) for v in vars]
kernel(opint, concat(vfs, dvs))::F
k_to_liou(k) ==
op := operator k
args := [realLiouvillian(a) for a in argument(k)]
empty?(args) => k::F
has?(op, 'prim) and not(is?(op, '%iint)) => do_int(op, args)
nm := name(op)
nm = 'polylog and
(iu := retractIfCan(first(args))@Union(Integer, "failed"))
case Integer =>
(i := iu::Integer) > 0 and i < 10 => do_int(op, args)
k2Elem0(k, op, args)
k2Elem0(k, op, args)
do_int1(op : BasicOperator, args : List(F), x : SY) : F ==
kf1 := op args
vars : List(SY) := [x]
vfs := [v::F for v in vars]
dvs := [realLiouvillian(D(kf1, v), x) for v in vars]
kernel(opint, concat(vfs, dvs))::F
k_to_liou1(k, x) ==
op := operator k
args := [realLiouvillian(a, x) for a in argument(k)]
empty?(args) => k::F
has?(op, 'prim) and not(is?(op, '%iint)) => do_int1(op, args, x)
nm := name(op)
nm = 'Gamma2 and D(first(args), x) = 0 => do_int1(op, args, x)
nm = 'polylog and
(iu := retractIfCan(first(args))@Union(Integer, "failed"))
case Integer =>
(i := iu::Integer) > 0 and i < 10 => do_int(op, args)
k2Elem0(k, op, args)
(nm = 'ellipticE2 or nm = 'ellipticF) and D(args(2), x) = 0 =>
do_int1(op, args, x)
nm = 'ellipticPi and D(args(2), x) = 0 and D(args(3), x) = 0 =>
do_int1(op, args, x)
k2Elem0(k, op, args)
k2Elem(k, l) ==
op := operator k
args := [realElem(a, l) for a in argument(k)]
empty?(args) => k::F
k2Elem0(k, op, args)
--The next 5 functions are used by normalize, once a relation is found
depeval(f, lk, k, v) ==
is?(k, 'log) => logeval(f, lk, k, v)
is?(k, 'exp) => expeval(f, lk, k, v)
is?(k, 'tan) => taneval(f, lk, k, v)
is?(k, 'atan) => ataneval(f, lk, k, v)
is?(k, NTHR) => rooteval(f, lk, k, v(minIndex v))
[f, empty(), empty()]
rooteval(f, lk, k, n) ==
nv := nthRoot(x := first argument k, m := retract(n)@Z)
l := [r for r in concat(k, toR(lk, x)) |
retract(second argument r)@Z ~= m]
lv := [nv ^ (n / (retract(second argument r)@Z::Q)) for r in l]
[eval(f, l, lv), l, lv]
ataneval(f, lk, k, v) ==
w := first argument k
s := tanSum [tanQ(qelt(v, i), x)
for i in minIndex v .. maxIndex v for x in toV lk]
g := +/[qelt(v, i) * x for i in minIndex v .. maxIndex v for x in toU lk]
h : F :=
zero?(d := 1 + s * w) => mpiover2
atan((w - s) / d)
g := g + h
[eval(f, [k], [g]), [k], [g]]
gdCoef?(c, v) ==
for i in minIndex v .. maxIndex v repeat
retractIfCan(qelt(v, i) / c)@Union(Z, "failed") case "failed" =>
return false
true
-- If k1 is part of k2 we should not express k1 in terms of k2
-- (othewise we would get infinite recursion).
-- Below we impose a stronger condition : we require
-- height(k1) to be maximal
goodCoef(v, l, s) ==
h : NonNegativeInteger := 0
j : Integer := 0
ll : List K := []
for k in l repeat
if (is?(k, 'log) or is?(k, 'exp)
or is?(k, 'tan) or is?(k, 'atan)) then
ll := cons(k, ll)
h := h + 1
not (h = (maxIndex(v) - minIndex(v) + 1)) => "failed"
h := 0
ll := reverse(ll)
for i in minIndex v .. maxIndex v for k in ll repeat
h1 := height(k)
if (h1 > h) then
j := i
h := h1
for i in minIndex v .. maxIndex v for k in ll repeat
is?(k, s) and (i >= j) and
((r := recip(qelt(v, i))) case Q) and
(retractIfCan(r::Q)@Union(Z, "failed") case Z)
and gdCoef?(qelt(v, i), v) => return([i, k])
"failed"
taneval(f, lk, k, v) ==
u := first argument k
fns := toU lk
c := u - +/[qelt(v, i) * x for i in minIndex v .. maxIndex v for x in fns]
(rec := goodCoef(v, lk, 'tan)) case "failed" =>
tannosimp(f, lk, k, v, fns, c)
v0 := retract(inv qelt(v, rec.index))@Z
lv := [qelt(v, i) for i in minIndex v .. maxIndex v |
i ~= rec.index]$List(Q)
l := [kk for kk in lk | kk ~= rec.ker]
g := tanSum(-v0 * c, concat(tanNa(k::F, v0),
[tanNa(x, - retract(a * v0)@Z) for a in lv for x in toV l]))
[eval(f, [rec.ker], [g]), [rec.ker], [g]]
tannosimp(f, lk, k, v, fns, c) ==
n := maxIndex v
lk := [x for x in lk | is?(x, 'tan) or is?(x, 'atan)]
lk1 := [x for x in lk for i in 1..n | not(qelt(v, i) = 0)]
every?(x +-> is?(x, 'tan), lk1) =>
dd := (d := (cd := splitDenominator v).den)::F
newt := [tan(u / dd) for u in fns
for i in 1..n | not(qelt(v, i) = 0)]$List(F)
newtan := [tanNa(t, d) for t in newt]$List(F)
li := [i for i in 1..n | not(qelt(v, i) = 0)]
h := tanSum(c, [tanNa(t, qelt(cd.num, i))
for i in li for t in newt])
newtan := concat(h, newtan)
lk1 := concat(k, lk1)
[eval(f, lk1, newtan), lk1, newtan]
h := tanSum(c, [tanQ(qelt(v, i), x)
for i in 1..n for x in toV lk])
[eval(f, [k], [h]), [k], [h]]
expnosimp(f, lk, k, v, fns, g) ==
n := maxIndex v
lk := [x for x in lk | is?(x, 'exp) or is?(x, 'log)]
lk1 := [x for x in lk for i in 1..n | not(qelt(v, i) = 0)]
every?(x +-> is?(x, 'exp), lk1) =>
dd := (d := (cd := splitDenominator v).den)::F
newe := [exp(y / dd) for y in fns
for i in 1..n | not(qelt(v, i) = 0)]$List(F)
newexp := [e ^ d for e in newe]$List(F)
li := [i for i in 1..n | not(qelt(v, i) = 0)]
h := */[e ^ qelt(cd.num, i)
for i in li for e in newe] * g
lk1 := concat(k, lk1)
newexp := concat(h, newexp)
[eval(f, lk1, newexp), lk1, newexp]
h := */[exp(y) ^ qelt(v, i)
for i in minIndex v .. maxIndex v for y in fns] * g
[eval(f, [k], [h]), [k], [h]]
logeval(f, lk, k, v) ==
z := first argument k
dd := lcm([denom(qelt(v, i))$Q for i in minIndex v .. maxIndex v
]$List(Z))
c := z^dd / (*/[x^(dd*qelt(v, i))
for x in toZ lk for i in minIndex v .. maxIndex v])
-- CHANGED log ktoZ x TO ktoY x SINCE WE WANT log exp f TO BE REPLACED BY f.
g := +/[qelt(v, i) * x
for i in minIndex v .. maxIndex v for x in toY lk]
+ log(c)/(dd::R::F)
[eval(f, [k], [g]), [k], [g]]
rischNormalize(f : F, vars : List SY) : REC ==
lk : List K := tower f
funs := lk -- [k for k in lk | height k > 1]@(List K)
pars := variables(f) -- [name(operator(k)) for k in lk | height k = 1]
pars := setDifference(pars, vars)
-- funs := [k for k in kers | height k > 1]
empty?(funs) => [f, empty(), empty()]
n := #funs
for i in 1..n for kk in rest funs repeat
klist := first(funs, i)
-- NO EVALUATION ON AN EMPTY VECTOR, WILL CAUSE INFINITE LOOP
(c := findRelation(vars, pars, klist, kk)) case vec and not empty?(c.vec) =>
rec := depeval(f, klist, kk, c.vec)
rn := rischNormalize(rec.func, vars)
return [rn.func,
concat(rec.kers, rn.kers), concat(rec.vals, rn.vals)]
c case func =>
rn := rischNormalize(eval(f, [kk], [c.func]), vars)
return [rn.func, concat(kk, rn.kers), concat(c.func, rn.vals)]
[f, empty(), empty()]
rischNormalize(f : F, v : SY) : REC == rischNormalize(f, [v])
rootNormalize(f, k) ==
(u := rootKernelNormalize(f, toR(tower f, first argument k), k))
case "failed" => f
(u::REC).func
rootKernelNormalize(f, l, k) ==
(c := rootDep(l, k)) case vec =>
rooteval(f, l, k, (c.vec)(minIndex(c.vec)))
"failed"
localnorm f == rischNormalize(f, []).func
validExponential(twr, eta, x) ==
(c := particularSolutionOverQ(construct([totalDifferentiate(g, x)
for g in (fns := toY twr)]$List(F))@Vector(F),
totalDifferentiate(eta, x))) case "failed" => "failed"
v := c::Vector(Q)
g := eta - +/[qelt(v, i) * yy
for i in minIndex v .. maxIndex v for yy in fns]
*/[exp(yy) ^ qelt(v, i)
for i in minIndex v .. maxIndex v for yy in fns] * exp g
if R has GcdDomain then
import from PolynomialRoots(IndexedExponents K, K, R, P, F)
irootDep(k : K) : U ==
n : N := (retract(second argument k)@Z)::N
pr := froot(first argument k, n)
not(pr.coef = 1) or not(pr.exponent = n) =>
pr.exponent = 1 => [pr.coef*pr.radicand]
nf : F := (pr.exponent)::F
nr : F := pr.radicand
nk : F := kernel(operator k, [nr, nf])
nv : F := pr.coef*nk
[nv]
[true]
else
irootDep(k : K) : U == [true]
rootDep(ker, k) ==
empty?(ker := toR(ker, first argument k)) => irootDep(k)
[new(1, lcm(retract(second argument k)@Z,
"lcm"/[retract(second argument r)@Z for r in ker])::Q)$Vector(Q)]
expeval(f, lk, k, v) ==
y := first argument k
fns := toY lk
g := y - +/[qelt(v, i) * z for i in minIndex v .. maxIndex v for z in fns]
(rec := goodCoef(v, lk, 'exp)) case "failed" =>
expnosimp(f, lk, k, v, fns, exp g)
v0 := retract(inv qelt(v, rec.index))@Z
lv := [qelt(v, i) for i in minIndex v .. maxIndex v |
i ~= rec.index]$List(Q)
l := [kk for kk in lk | kk ~= rec.ker]
h : F := */[exp(z) ^ (- retract(a * v0)@Z) for a in lv for z in toY l]
h := h * exp(-v0 * g) * (k::F) ^ v0
[eval(f, [rec.ker], [h]), [rec.ker], [h]]
if F has CombinatorialOpsCategory then
normalize f == rtNormalize localnorm factorials realElementary f
normalize(f, x) ==
rtNormalize(rischNormalize(factorials(realElementary(f, x), x), x).func)
factdeprel(l, k) ==
((r := retractIfCan(n := first argument k)@Union(Z, "failed"))
case Z) and (r::Z > 0) => [factorial(r::Z)::F]
for x in l repeat
m := first argument x
((r := retractIfCan(n - m)@Union(Z, "failed")) case Z) =>
(r::Z > 0) => return([*/[(m + i::F) for i in 1..r] * x::F])
error "bad order of factorials"
[true]
else
normalize f == rtNormalize localnorm realElementary f
normalize(f, x) == rtNormalize(rischNormalize(realElementary(f, x), x).func)
spad
Compiling FriCAS source code from file
/var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/4918645116496175848-25px002.spad
using old system compiler.
EFSTRUX abbreviates package ElementaryFunctionStructurePackage
------------------------------------------------------------------------
initializing NRLIB EFSTRUX for ElementaryFunctionStructurePackage
compiling into NRLIB EFSTRUX
****** Domain: R already in scope
****** Domain: R already in scope
****** Domain: R already in scope
****** Domain: F already in scope
****** Domain: F already in scope
importing TangentExpansions F
importing IntegrationTools(R,F)
importing IntegerLinearDependence F
importing AlgebraicManipulations(R,F)
importing InnerCommonDenominator(Integer,Fraction Integer,Vector Integer,Vector Fraction Integer)
processing macro definition P ==> SparseMultivariatePolynomial(R,Kernel F)
****** Domain: F already in scope
augmenting F: (CombinatorialOpsCategory)
****** comp fails at level 1 with expression: ******
((|LinearlyExplicitRingOver| (|Integer|)))
****** level 1 ******
$x:= (LinearlyExplicitRingOver (Integer))
$m:= $EmptyMode
$f:=
((((* #) (+ #) (< #) (<= #) ...)))
>> Apparent user error:
cannot compile (LinearlyExplicitRingOver (Integer))
Tests
normalize is supposed to rewrite the expression using the least possible number of independent kernels
fricas
ex1:Expression Complex Integer:=exp(conjugate(x)+x)+exp(x) + exp(conjugate(x))
>> System error:
#<SB-SYS:FD-STREAM for "file /var/aw/var/LatexWiki/FSPECX.NRLIB/FSPECX.fasl" {10030C3813}>
is a fasl file compiled with SBCL 1.1.1, and can't be loaded into SBCL
2.2.9.debian.
fricas
normalize(ex1-ex2)
>> System error:
#<SB-SYS:FD-STREAM for "file /var/aw/var/LatexWiki/FSPECX.NRLIB/FSPECX.fasl" {100358E473}>
is a fasl file compiled with SBCL 1.1.1, and can't be loaded into SBCL
2.2.9.debian.
fricas
ex3:Expression Complex Integer:=tan(conjugate(x)+x)+tan(x) + tan(conjugate(x))
>> System error:
#<SB-SYS:FD-STREAM for "file /var/aw/var/LatexWiki/FSPECX.NRLIB/FSPECX.fasl" {10035CA7F3}>
is a fasl file compiled with SBCL 1.1.1, and can't be loaded into SBCL
2.2.9.debian.
fricas
normalize(ex3-ex4)
Type: Expression(Complex(Integer))
fricas
)lib FSPECX EFSTRUX
FunctionalSpecialFunction is already explicitly exposed in frame
initial
FunctionalSpecialFunction will be automatically loaded when needed
from /var/aw/var/LatexWiki/FSPECX.NRLIB/FSPECX
ElementaryFunctionStructurePackage is now explicitly exposed in
frame initial
ElementaryFunctionStructurePackage will be automatically loaded when
needed from /var/aw/var/LatexWiki/EFSTRUX.NRLIB/EFSTRUX
fricas
integrate(exp(x),x)
>> System error:
#<SB-SYS:FD-STREAM for "file /var/aw/var/LatexWiki/EFSTRUX.NRLIB/EFSTRUX.fasl" {10039118A3}>
is a fasl file compiled with SBCL 1.1.1, and can't be loaded into SBCL
2.2.9.debian.
Unevaluated
fricas
integrate(conjugate(x),x)
>> System error:
#<SB-SYS:FD-STREAM for "file /var/aw/var/LatexWiki/FSPECX.NRLIB/FSPECX.fasl" {1003929EC3}>
is a fasl file compiled with SBCL 1.1.1, and can't be loaded into SBCL
2.2.9.debian.
fricas
integrate(sqrt(x*conjugate(x)),x)
>> System error:
#<SB-SYS:FD-STREAM for "file /var/aw/var/LatexWiki/FSPECX.NRLIB/FSPECX.fasl" {10039424B3}>
is a fasl file compiled with SBCL 1.1.1, and can't be loaded into SBCL
2.2.9.debian.