login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxDoublePowerSeries revision 9 of 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Editor: Bill Page
Time: 2014/08/25 00:50:13 GMT+0
Note:

changed:
-a(i,j)==(1+(j-1)*i)/Gamma(1+2*i+4*j)
-aa(k,l)==1+reduce(+,concat [[a(i,j)*k^i*l^j for i in 0..10] for j in 1..11])
-aa(0,l)
-aa(k,0)
-aa(1,1)::Float
-aa(0,0)::Float
-aa(-1,-1)::Float
a(i:INT,j:INT):FRAC INT == (1+(j-1)*i)/Gamma(1+2*i+4*j)
aa:DMP([k,l], FRAC INT) := 1+reduce(+,concat [[a(i,j)*k^i*l^j for i in 0..4] for j in 1..5])
eval(aa,[k=0,l=l])
eval(aa,[k=k,l=0])
eval(aa,[k=1.0,l=1.0])
eval(aa,[k=0,l=0])
eval(aa,[k=-1,l=-1])::Float

removed:
-
-\begin{axiom}
-i0:=a(1/2+%i*beta,0)*(-x)^(1/2+%i*beta)/cosh(%pi*beta)
-i0':=a(1/2+%i*beta,0)*exp((1/2+%i*beta)*log(-x))/cosh(%pi*beta)
-i0'':=htrigs %
-i1:=a(0,1/2+%i*delta)*(-y)^(1/2+%i*delta)/cosh(%pi*delta)
-i2:=a(1/2+%i*beta,1/2+%i*delta)*(-y)^(1/2+%i*delta)/(cosh(%pi*beta)*cosh(%pi*delta))
-eval(i0,beta=-1)
-eval(i0,beta=0)
-eval(i0,beta=1)
-eval(i0,[beta=1,x=1])
-%::Expression Complex Float
-%::Complex Float
-Gamma(2+%i*2)
-Gamma(2.0+%i*2.0)
-eval(i1,delta=-1)
-eval(i1,delta=0)
-eval(i1,delta=1)
-\end{axiom}
-
-\begin{axiom}
-integrate(i0,beta=%minusInfinity..%plusInfinity,"noPole")
-\end{axiom}
-
-\begin{axiom}
-integrate(i0'',beta=%minusInfinity..%plusInfinity,"noPole")
-\end{axiom}
-
-\begin{axiom}
-integrate(i1,delta=%minusInfinity..%plusInfinity,"noPole")
-\end{axiom}
-
-\begin{axiom}
-integrate(x^(t-1)*exp(-x),x=0..%plusInfinity,"noPole")
-\end{axiom}
-
-\begin{axiom}
-integrate(x^((2+%i*2)-1)*exp(-x),x=0..%plusInfinity,"noPole")
-\end{axiom}

changed:
-gnuDraw(aa(x,y),x=-30..60,y=-30..30,"SandBoxDoublePowerSeries1.dat",title=="Generating Function")
gnuDraw(aa,k=-30..60,l=-30..30,"SandBoxDoublePowerSeries1.dat",title=="Generating Function")

fricas
a!

\label{eq1}a !(1)
Type: Variable(a!)
fricas
!:=operator '!

\label{eq2}!(2)
Type: BasicOperator?
fricas
a(i,j)==(1+(j-1)*i)/!(2*i+4*j)
Type: Void
fricas
a0:=matrix [[a(i,j)*k^i*l^j for i in 0..5] for j in 1..4]
fricas
Compiling function a with type (NonNegativeInteger,PositiveInteger)
       -> Expression(Integer)

\label{eq3}\left[ 
\begin{array}{cccccc}
{l \over{! \left({4}\right)}}&{{k \  l}\over{! \left({6}\right)}}&{{{{k}^{2}}\  l}\over{! \left({8}\right)}}&{{{{k}^{3}}\  l}\over{! \left({1
0}\right)}}&{{{{k}^{4}}\  l}\over{! \left({12}\right)}}&{{{{k}^{5}}\  l}\over{! \left({14}\right)}}
\
{{{l}^{2}}\over{! \left({8}\right)}}&{{2 \  k \ {{l}^{2}}}\over{! \left({10}\right)}}&{{3 \ {{k}^{2}}\ {{l}^{2}}}\over{! \left({1
2}\right)}}&{{4 \ {{k}^{3}}\ {{l}^{2}}}\over{! \left({14}\right)}}&{{5 \ {{k}^{4}}\ {{l}^{2}}}\over{! \left({16}\right)}}&{{6 \ {{k}^{5}}\ {{l}^{2}}}\over{! \left({18}\right)}}
\
{{{l}^{3}}\over{! \left({12}\right)}}&{{3 \  k \ {{l}^{3}}}\over{! \left({14}\right)}}&{{5 \ {{k}^{2}}\ {{l}^{3}}}\over{! \left({1
6}\right)}}&{{7 \ {{k}^{3}}\ {{l}^{3}}}\over{! \left({18}\right)}}&{{9 \ {{k}^{4}}\ {{l}^{3}}}\over{! \left({20}\right)}}&{{{11}\ {{k}^{5}}\ {{l}^{3}}}\over{! \left({22}\right)}}
\
{{{l}^{4}}\over{! \left({16}\right)}}&{{4 \  k \ {{l}^{4}}}\over{! \left({18}\right)}}&{{7 \ {{k}^{2}}\ {{l}^{4}}}\over{! \left({2
0}\right)}}&{{{10}\ {{k}^{3}}\ {{l}^{4}}}\over{! \left({22}\right)}}&{{{1
3}\ {{k}^{4}}\ {{l}^{4}}}\over{! \left({24}\right)}}&{{{16}\ {{k}^{5}}\ {{l}^{4}}}\over{! \left({26}\right)}}
(3)
Type: Matrix(Expression(Integer))
fricas
a(i:INT,j:INT):FRAC INT == (1+(j-1)*i)/Gamma(1+2*i+4*j)
Function declaration a : (Integer,Integer) -> Fraction(Integer) has been added to workspace. Compiled code for a has been cleared. 1 old definition(s) deleted for function or rule a
Type: Void
fricas
aa:DMP([k,l], FRAC INT) := 1+reduce(+,concat [[a(i,j)*k^i*l^j for i in 0..4] for j in 1..5])
fricas
Compiling function a with type (Integer,Integer) -> Fraction(Integer
      )

\label{eq4}\begin{array}{@{}l}
\displaystyle
{{1 \over{17934608506571403558912000000}}\ {{k}^{4}}\ {{l}^{5}}}+ 
\
\
\displaystyle
{{1 \over{47726800133326110720000}}\ {{k}^{4}}\ {{l}^{4}}}+ 
\
\
\displaystyle
{{1 \over{270322445352960000}}\ {{k}^{4}}\ {{l}^{3}}}+{{1 \over{4
184557977600}}\ {{k}^{4}}\ {{l}^{2}}}+ 
\
\
\displaystyle
{{1 \over{479001600}}\ {{k}^{4}}\  l}+{{1 \over{3102242008666
1971968000000}}\ {{k}^{3}}\ {{l}^{5}}}+ 
\
\
\displaystyle
{{1 \over{112400072777760768000}}\ {{k}^{3}}\ {{l}^{4}}}+{{1 \over{914624815104000}}\ {{k}^{3}}\ {{l}^{3}}}+ 
\
\
\displaystyle
{{1 \over{21794572800}}\ {{k}^{3}}\ {{l}^{2}}}+{{1 \over{3628
800}}\ {{k}^{3}}\  l}+ 
\
\
\displaystyle
{{1 \over{68938711303693271040000}}\ {{k}^{2}}\ {{l}^{5}}}+ 
\
\
\displaystyle
{{1 \over{347557429739520000}}\ {{k}^{2}}\ {{l}^{4}}}+{{1 \over{4
184557977600}}\ {{k}^{2}}\ {{l}^{3}}}+ 
\
\
\displaystyle
{{1 \over{159667200}}\ {{k}^{2}}\ {{l}^{2}}}+{{1 \over{40320}}\ {{k}^{2}}\  l}+ 
\
\
\displaystyle
{{1 \over{224800145555521536000}}\  k \ {{l}^{5}}}+{{1 \over{1
600593426432000}}\  k \ {{l}^{4}}}+ 
\
\
\displaystyle
{{1 \over{29059430400}}\  k \ {{l}^{3}}}+{{1 \over{1814400}}\  k \ {{l}^{2}}}+{{1 \over{720}}\  k \  l}+ 
\
\
\displaystyle
{{1 \over{2432902008176640000}}\ {{l}^{5}}}+{{1 \over{2092278
9888000}}\ {{l}^{4}}}+ 
\
\
\displaystyle
{{1 \over{479001600}}\ {{l}^{3}}}+{{1 \over{40320}}\ {{l}^{2}}}+{{1 \over{24}}\  l}+ 1 
(4)
Type: DistributedMultivariatePolynomial?([k,l],Fraction(Integer))
fricas
eval(aa,[k=0,l=l])

\label{eq5}\begin{array}{@{}l}
\displaystyle
{{1 \over{2432902008176640000}}\ {{l}^{5}}}+{{1 \over{2092278
9888000}}\ {{l}^{4}}}+ 
\
\
\displaystyle
{{1 \over{479001600}}\ {{l}^{3}}}+{{1 \over{40320}}\ {{l}^{2}}}+{{1 \over{24}}\  l}+ 1 
(5)
Type: DistributedMultivariatePolynomial?([k,l],Polynomial(Fraction(Integer)))
fricas
eval(aa,[k=k,l=0])

\label{eq6}1(6)
Type: DistributedMultivariatePolynomial?([k,l],Polynomial(Fraction(Integer)))
fricas
eval(aa,[k=1.0,l=1.0])

\label{eq7}1.0431059959_689366305(7)
Type: Polynomial(Float)
fricas
eval(aa,[k=0,l=0])

\label{eq8}1(8)
Type: DistributedMultivariatePolynomial?([k,l],Polynomial(Fraction(Integer)))
fricas
eval(aa,[k=-1,l=-1])::Float

\label{eq9}0.9597219487_2528319766(9)
Type: Float

fricas
)lib GDRAW
GnuDraw is now explicitly exposed in frame initial GnuDraw will be automatically loaded when needed from /var/aw/var/LatexWiki/GDRAW.NRLIB/GDRAW gnuDraw(aa,k=-30..60,l=-30..30,"SandBoxDoublePowerSeries1.dat",title=="Generating Function")
fricas
Compiling function %B with type (DoubleFloat,DoubleFloat) -> 
      DoubleFloat 
   Transmitting data...
Type: Void

[terminal=pslatex,terminaloptions=color,scale=1.3]
set view 60, 30, 0.85, 1.1
set samples 20, 20
set isosamples 21, 21
set contour base
set cntrparam levels auto 20
set title "3D gnuplot demo - contour plot" 
set xlabel "X axis" 
set ylabel "Y axis" 
set zlabel "Z axis" 
set zlabel  offset character 1, 0, 0 font "" textcolor lt -1 norotate
load "SandBoxDoublePowerSeries1.dat"