login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox DoOps revision 1 of 2

1 2
Editor:
Time: 2007/11/18 17:58:45 GMT-8
Note: don't ask people to fill this line in, it's annoying

changed:
-
\begin{axiom}
zerosOf(7-5*x+5*x**2-x**3,x)
\end{axiom}

\begin{axiom}
simplify((6+(-1+x)**2*(-2+(-3+x)*(-1+x))-6*x)/(-1+x))
\end{axiom}

\begin{axiom}
factor(-(-x**2+y**2)*(z-x)+(-x**2+z**2)*(y-x))

simplify(((-(-w+y)*(-w**2+x**2)+(-w**2+y**2)*(x-w))*(-(-w**3+x**3)*(z-w)+(-w**3+z**3)*(x-w))-((-w**3+y**3)*(x-w)-(-w+y)*(-w**3+x**3))*((-w**2+z**2)*(x-w)-(-w**2+x**2)*(z-w)))/(x-w))

expand((z-y)*(z-x)*(z-w)*(y-x)*(y-w)*(x-w))
\end{axiom}

axiom
zerosOf(7-5*x+5*x**2-x**3,x)

\label{eq1}\begin{array}{@{}l}
\displaystyle
\left[ \%x 0, \:{{-{\sqrt{-{3 \ {\%x 0^2}}+{{10}\  \%x 0}+ 5}}- \%x 0 + 5}\over 2}, \: \right.
\
\
\displaystyle
\left.{{{\sqrt{-{3 \ {\%x 0^2}}+{{10}\  \%x 0}+ 5}}- \%x 0 + 5}\over 2}\right] 
(1)
Type: List(Expression(Integer))

axiom
simplify((6+(-1+x)**2*(-2+(-3+x)*(-1+x))-6*x)/(-1+x))

\label{eq2}{x^3}-{5 \ {x^2}}+{5 \  x}- 7(2)
Type: Expression(Integer)

axiom
factor(-(-x**2+y**2)*(z-x)+(-x**2+z**2)*(y-x))

\label{eq3}{\left(y - x \right)}\ {\left(z - y \right)}\ {\left(z - x \right)}(3)
Type: Factored(Polynomial(Integer))
axiom
simplify(((-(-w+y)*(-w**2+x**2)+(-w**2+y**2)*(x-w))*
;(-(-w**3+x**3)*(z-w)+(-w**3+z**3)*(x-w))-((-w**
;3+y**3)*(x-w)-(-w+y)*(-w**3+x**3))*((-w**2+z*&
#42;2)*(x-w)-(-w**2+x**2)*(z-w)))/(x-w))

\label{eq4}\begin{array}{@{}l}
\displaystyle
{{\left({{\left(x - w \right)}\ {y^2}}+{{\left(-{x^2}+{w^2}\right)}\  y}+{w \ {x^2}}-{{w^2}\  x}\right)}\ {z^3}}+ 
\
\
\displaystyle
{{\left({{\left(- x + w \right)}\ {y^3}}+{{\left({x^3}-{w^3}\right)}\  y}-{w \ {x^3}}+{{w^3}\  x}\right)}\ {z^2}}+ 
\
\
\displaystyle
{{\left({{\left({x^2}-{w^2}\right)}\ {y^3}}+{{\left(-{x^3}+{w^3}\right)}\ {y^2}}+{{w^2}\ {x^3}}-{{w^3}\ {x^2}}\right)}\  z}+ 
\
\
\displaystyle
{{\left(-{w \ {x^2}}+{{w^2}\  x}\right)}\ {y^3}}+{{\left({w \ {x^3}}-{{w^3}\  x}\right)}\ {y^2}}+ 
\
\
\displaystyle
{{\left(-{{w^2}\ {x^3}}+{{w^3}\ {x^2}}\right)}\  y}
(4)
Type: Expression(Integer)
axiom
expand((z-y)*(z-x)*(z-w)*(y-x)*(y-w)*(x-w))

\label{eq5}\begin{array}{@{}l}
\displaystyle
{{\left({{\left(x - w \right)}\ {y^2}}+{{\left(-{x^2}+{w^2}\right)}\  y}+{w \ {x^2}}-{{w^2}\  x}\right)}\ {z^3}}+ 
\
\
\displaystyle
{{\left({{\left(- x + w \right)}\ {y^3}}+{{\left({x^3}-{w^3}\right)}\  y}-{w \ {x^3}}+{{w^3}\  x}\right)}\ {z^2}}+ 
\
\
\displaystyle
{{\left({{\left({x^2}-{w^2}\right)}\ {y^3}}+{{\left(-{x^3}+{w^3}\right)}\ {y^2}}+{{w^2}\ {x^3}}-{{w^3}\ {x^2}}\right)}\  z}+ 
\
\
\displaystyle
{{\left(-{w \ {x^2}}+{{w^2}\  x}\right)}\ {y^3}}+{{\left({w \ {x^3}}-{{w^3}\  x}\right)}\ {y^2}}+ 
\
\
\displaystyle
{{\left(-{{w^2}\ {x^3}}+{{w^3}\ {x^2}}\right)}\  y}
(5)
Type: Polynomial(Integer)