- Description
- DifferentialSparseMultivariatePolynomial?} implements an ordinary differential polynomial ring by combining a domain belonging to the category DifferentialVariableCategory? with the domain SparseMultivariatePolynomial?.
- Author
- William Sit
- Date Created
- 19 July 1990
- Date Last Updated
- 13 September 1991
Basic Operations
axiom
)show DifferentialPolynomialCategory
DifferentialPolynomialCategory(R: Ring,S: OrderedSet,V:
DifferentialVariableCategory t#2,E: OrderedAbelianMonoidSup) is a category constructor
Abbreviation for DifferentialPolynomialCategory is DPOLCAT
This constructor is exposed in this frame.
Issue )edit /usr/local/lib/axiom/target/x86_64-unknown-
linux/../../src/algebra/DPOLCAT.spad to see algebra source code for DPOLCAT
------------------------------- Operations --------------------------------
?*? : (%,R) -> % ?*? : (R,%) -> %
?*? : (%,%) -> % ?*? : (Integer,%) -> %
?*? : (PositiveInteger,%) -> % ?**? : (%,PositiveInteger) ->
%
?+? : (%,%) -> % ?-? : (%,%) -> %
-? : % -> % ?=? : (%,%) -> Boolean
D : (%,(R -> R)) -> % D : % -> % if R has DIFRING
D : (%,List V) -> % D : (%,V) -> %
1 : () -> % 0 : () -> %
?^? : (%,PositiveInteger) -> % coefficient : (%,E) -> R
coefficients : % -> List R coerce : S -> %
coerce : V -> % coerce : R -> %
coerce : Integer -> % coerce : % -> OutputForm
degree : % -> E differentiate : (%,List V) -> %
differentiate : (%,V) -> % eval : (%,List V,List %) -> %
eval : (%,V,%) -> % eval : (%,List V,List R) -> %
eval : (%,V,R) -> % eval : (%,List %,List %) -> %
eval : (%,%,%) -> % eval : (%,Equation %) -> %
eval : (%,List Equation %) -> % ground : % -> R
ground? : % -> Boolean hash : % -> SingleInteger
initial : % -> % isobaric? : % -> Boolean
latex : % -> String leader : % -> V
leadingCoefficient : % -> R leadingMonomial : % -> %
map : ((R -> R),%) -> % mapExponents : ((E -> E),%) -> %
minimumDegree : % -> E monomial : (R,E) -> %
monomial? : % -> Boolean monomials : % -> List %
one? : % -> Boolean order : % -> NonNegativeInteger
pomopo! : (%,R,E,%) -> % primitiveMonomials : % -> List %
recip : % -> Union(%,"failed") reductum : % -> %
retract : % -> S retract : % -> V
retract : % -> R sample : () -> %
separant : % -> % variables : % -> List V
weight : % -> NonNegativeInteger zero? : % -> Boolean
?~=? : (%,%) -> Boolean
?*? : (Fraction Integer,%) -> % if R has ALGEBRA FRAC INT
?*? : (%,Fraction Integer) -> % if R has ALGEBRA FRAC INT
?*? : (NonNegativeInteger,%) -> %
?**? : (%,NonNegativeInteger) -> %
?/? : (%,R) -> % if R has FIELD
?<? : (%,%) -> Boolean if R has ORDSET
?<=? : (%,%) -> Boolean if R has ORDSET
?>? : (%,%) -> Boolean if R has ORDSET
?>=? : (%,%) -> Boolean if R has ORDSET
D : (%,(R -> R),NonNegativeInteger) -> %
D : (%,List Symbol,List NonNegativeInteger) -> % if R has PDRING SYMBOL
D : (%,Symbol,NonNegativeInteger) -> % if R has PDRING SYMBOL
D : (%,List Symbol) -> % if R has PDRING SYMBOL
D : (%,Symbol) -> % if R has PDRING SYMBOL
D : (%,NonNegativeInteger) -> % if R has DIFRING
D : (%,List V,List NonNegativeInteger) -> %
D : (%,V,NonNegativeInteger) -> %
?^? : (%,NonNegativeInteger) -> %
associates? : (%,%) -> Boolean if R has INTDOM
binomThmExpt : (%,%,NonNegativeInteger) -> % if R has COMRING
characteristic : () -> NonNegativeInteger
charthRoot : % -> Union(%,"failed") if
and(has($,CharacteristicNonZero),has(R,PolynomialFactorizationExplicit)) or R has CHARNZ
coefficient : (%,List V,List NonNegativeInteger) -> %
coefficient : (%,V,NonNegativeInteger) -> %
coerce : % -> % if R has INTDOM
coerce : Fraction Integer -> % if R has RETRACT FRAC INT or R has ALGEBRA FRAC INT
conditionP : Matrix % -> Union(Vector %,"failed") if
and(has($,CharacteristicNonZero),has(R,PolynomialFactorizationExplicit))
content : (%,V) -> % if R has GCDDOM
content : % -> R if R has GCDDOM
convert : % -> InputForm if V has KONVERT INFORM and R has KONVERT INFORM
convert : % -> Pattern Integer if V has KONVERT PATTERN INT and R has KONVERT PATTERN
INT
convert : % -> Pattern Float if V has KONVERT PATTERN FLOAT and R has KONVERT PATTERN
FLOAT
degree : (%,S) -> NonNegativeInteger
degree : (%,List V) -> List NonNegativeInteger
degree : (%,V) -> NonNegativeInteger
differentialVariables : % -> List S
differentiate : (%,(R -> R)) -> %
differentiate : (%,(R -> R),NonNegativeInteger) -> %
differentiate : (%,List Symbol,List NonNegativeInteger) -> % if R has PDRING SYMBOL
differentiate : (%,Symbol,NonNegativeInteger) -> % if R has PDRING SYMBOL
differentiate : (%,List Symbol) -> % if R has PDRING SYMBOL
differentiate : (%,Symbol) -> % if R has PDRING SYMBOL
differentiate : (%,NonNegativeInteger) -> % if R has DIFRING
differentiate : % -> % if R has DIFRING
differentiate : (%,List V,List NonNegativeInteger) -> %
differentiate : (%,V,NonNegativeInteger) -> %
discriminant : (%,V) -> % if R has COMRING
eval : (%,List S,List R) -> % if R has DIFRING
eval : (%,S,R) -> % if R has DIFRING
eval : (%,List S,List %) -> % if R has DIFRING
eval : (%,S,%) -> % if R has DIFRING
exquo : (%,%) -> Union(%,"failed") if R has INTDOM
exquo : (%,R) -> Union(%,"failed") if R has INTDOM
factor : % -> Factored % if R has PFECAT
factorPolynomial : SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial
% if R has PFECAT
factorSquareFreePolynomial : SparseUnivariatePolynomial % -> Factored
SparseUnivariatePolynomial % if R has PFECAT
gcd : (%,%) -> % if R has GCDDOM
gcd : List % -> % if R has GCDDOM
gcdPolynomial : (SparseUnivariatePolynomial %,SparseUnivariatePolynomial %) ->
SparseUnivariatePolynomial % if R has GCDDOM
isExpt : % -> Union(Record(var: V,exponent:
NonNegativeInteger),"failed")
isPlus : % -> Union(List %,"failed")
isTimes : % -> Union(List %,"failed")
lcm : (%,%) -> % if R has GCDDOM
lcm : List % -> % if R has GCDDOM
mainVariable : % -> Union(V,"failed")
makeVariable : % -> (NonNegativeInteger -> %) if R has DIFRING
makeVariable : S -> (NonNegativeInteger -> %)
max : (%,%) -> % if R has ORDSET
min : (%,%) -> % if R has ORDSET
minimumDegree : (%,List V) -> List NonNegativeInteger
minimumDegree : (%,V) -> NonNegativeInteger
monicDivide : (%,%,V) -> Record(quotient: %,remainder: %)
monomial : (%,List V,List NonNegativeInteger) -> %
monomial : (%,V,NonNegativeInteger) -> %
multivariate : (SparseUnivariatePolynomial %,V) -> %
multivariate : (SparseUnivariatePolynomial R,V) -> %
numberOfMonomials : % -> NonNegativeInteger
order : (%,S) -> NonNegativeInteger
patternMatch : (%,Pattern Integer,PatternMatchResult(Integer,%)) ->
PatternMatchResult(Integer,%) if V has PATMAB INT and R has PATMAB INT
patternMatch : (%,Pattern Float,PatternMatchResult(Float,%)) ->
PatternMatchResult(Float,%) if V has PATMAB FLOAT and R has PATMAB FLOAT
prime? : % -> Boolean if R has PFECAT
primitivePart : (%,V) -> % if R has GCDDOM
primitivePart : % -> % if R has GCDDOM
reducedSystem : Matrix % -> Matrix R
reducedSystem : (Matrix %,Vector %) -> Record(mat: Matrix R,vec: Vector R)
reducedSystem : (Matrix %,Vector %) -> Record(mat: Matrix Integer,vec: Vector
Integer) if R has LINEXP INT
reducedSystem : Matrix % -> Matrix Integer if R has LINEXP INT
resultant : (%,%,V) -> % if R has COMRING
retract : % -> Integer if R has RETRACT INT
retract : % -> Fraction Integer if R has RETRACT FRAC INT
retractIfCan : % -> Union(S,"failed")
retractIfCan : % -> Union(V,"failed")
retractIfCan : % -> Union(Integer,"failed") if R has RETRACT INT
retractIfCan : % -> Union(Fraction Integer,"failed") if R has RETRACT FRAC
INT
retractIfCan : % -> Union(R,"failed")
solveLinearPolynomialEquation : (List SparseUnivariatePolynomial
%,SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial
%,"failed") if R has PFECAT
squareFree : % -> Factored % if R has GCDDOM
squareFreePart : % -> % if R has GCDDOM
squareFreePolynomial : SparseUnivariatePolynomial % -> Factored
SparseUnivariatePolynomial % if R has PFECAT
subtractIfCan : (%,%) -> Union(%,"failed")
totalDegree : (%,List V) -> NonNegativeInteger
totalDegree : % -> NonNegativeInteger
unit? : % -> Boolean if R has INTDOM
unitCanonical : % -> % if R has INTDOM
unitNormal : % -> Record(unit: %,canonical: %,associate: %) if R has INTDOM
univariate : % -> SparseUnivariatePolynomial R
univariate : (%,V) -> SparseUnivariatePolynomial %
weight : (%,S) -> NonNegativeInteger
weights : (%,S) -> List NonNegativeInteger
weights : % -> List NonNegativeInteger
- References
- Kolchin, E.R. "Differential Algebra and Algebraic Groups" (Academic Press, 1973).
Example
axiom
odvar:=ODVAR Symbol
Type: Domain
axiom
-- here are the first 5 derivatives of w
-- the i-th derivative of w is printed as w subscript 5
[makeVariable('w,i)$odvar for i in 5..0 by -1]
Type: List OrderlyDifferentialVariable
? Symbol
axiom
-- these are now algebraic indeterminates, ranked in an orderly way
-- in increasing order:
sort %
Type: List OrderlyDifferentialVariable
? Symbol
axiom
-- we now make a general differential polynomial ring
-- instead of ODVAR, one can also use SDVAR for sequential ordering
dpol:=DSMP (FRAC INT, Symbol, odvar);
Type: Domain
axiom
-- instead of using makeVariable, it is easier to
-- think of a differential variable w as a map, where
-- w.n is n-th derivative of w as an algebraic indeterminate
w := makeVariable('w)$dpol
Type: (NonNegativeInteger
? -> DifferentialSparseMultivariatePolynomial
?(Fraction Integer,Symbol,OrderlyDifferentialVariable
? Symbol))
axiom
-- create another one called z, which is higher in rank than w
-- since we are ordering by Symbol
z := makeVariable('z)$dpol
Type: (NonNegativeInteger
? -> DifferentialSparseMultivariatePolynomial
?(Fraction Integer,Symbol,OrderlyDifferentialVariable
? Symbol))
axiom
-- now define some differential polynomial
(f,b):dpol
Type: Void
axiom
f:=w.4::dpol - w.1 * w.1 * z.3
Type: DifferentialSparseMultivariatePolynomial
?(Fraction Integer,Symbol,OrderlyDifferentialVariable
? Symbol)
axiom
b:=(z.1::dpol)^3 * (z.2)^2 - w.2
Type: DifferentialSparseMultivariatePolynomial
?(Fraction Integer,Symbol,OrderlyDifferentialVariable
? Symbol)
axiom
-- compute the leading derivative appearing in b
lb:=leader b
Type: OrderlyDifferentialVariable
? Symbol
axiom
-- the separant is the partial derivative of b with respect to its leader
sb:=separant b
Type: DifferentialSparseMultivariatePolynomial
?(Fraction Integer,Symbol,OrderlyDifferentialVariable
? Symbol)
axiom
-- of course you can differentiate these differential polynomials
-- and try to reduce f modulo the differential ideal generated by b
-- first eliminate z.3 using the derivative of b
bprime:= differentiate b
Type: DifferentialSparseMultivariatePolynomial
?(Fraction Integer,Symbol,OrderlyDifferentialVariable
? Symbol)
axiom
-- find its leader
lbprime:= leader bprime
Type: OrderlyDifferentialVariable
? Symbol
axiom
-- differentiate f partially with respect to lbprime
pbf:=differentiate (f, lbprime)
Type: DifferentialSparseMultivariatePolynomial
?(Fraction Integer,Symbol,OrderlyDifferentialVariable
? Symbol)
axiom
-- to obtain the partial remainder of f with respect to b
ftilde:=sb * f- pbf * bprime
Type: DifferentialSparseMultivariatePolynomial
?(Fraction Integer,Symbol,OrderlyDifferentialVariable
? Symbol)
axiom
-- note high powers of lb still appears in ftilde
-- the initial is the leading coefficient when b is written
-- as a univariate polynomial in its leader
ib:=initial b
Type: DifferentialSparseMultivariatePolynomial
?(Fraction Integer,Symbol,OrderlyDifferentialVariable
? Symbol)
axiom
-- compute the leading coefficient of ftilde
-- as a polynomial in its leader
lcef:=leadingCoefficient univariate(ftilde, lb)
Type: DifferentialSparseMultivariatePolynomial
?(Fraction Integer,Symbol,OrderlyDifferentialVariable
? Symbol)
axiom
-- now to continue eliminating the high powers of lb appearing in ftilde:
-- to obtain the remainder of f modulo b and its derivatives
f0:=ib * ftilde - lcef * b * lb
Type: DifferentialSparseMultivariatePolynomial
?(Fraction Integer,Symbol,OrderlyDifferentialVariable
? Symbol)