|
|
last edited 1 year ago by test1 |
1 2 | ||
Editor:
Time: 2007/11/18 17:47:56 GMT-8 |
||
Note: syntax improvements |
changed: - Biquaternion Calculus Domain **D. Cyganski and Bill Page - July 2007** This version is implemented as a new domain in Aldor . \begin{aldor} #pile #include "axiom" import from NonNegativeInteger BiQuaternion(R:Join(OrderedSet,CommutativeRing)): Exports == Implementation where C==>Complex Expression R Exports ==> QuaternionCategory(C) with qlist: List C -> % -- takes a complex list (parameter l) into a quaternion listq: % -> List C -- takes a quaternion into a list matrixq: % -> SquareMatrix(2,C) -- takes a quaternion into a matrix sig0:% sig1:% sig2:% sig3:% siglist: % -> List C -- Pauli basis representation of the biquaternion if Complex(Expression(R)) has PartialDifferentialRing(Symbol) then D: (%,Symbol,Symbol,Symbol) -> % -- quaternion derivative rot: (C,%) -> % -- biquaternion rotation /: (%,%) -> % /: (C,%) -> % /: (%,C) -> % abs: % -> C exp: % -> % coerce: Complex R -> % Implementation ==> Quaternion C add import from C coerce(z:Complex R):% == import from Expression(R),ComplexFunctions2(R,Expression R) map(coerce,z)::% -- Define a function that takes a complex list (parameter l) into a quaternion qlist(l:List C):%== import from Integer quatern(l 1,l 2,l 3,l 4) -- Define a function that takes a quaternion into a list listq(x:%):List C == [real x, imagI x, imagJ x, imagK x] -- Define a function that takes a biquat into a matrix matrixq(x:%):SquareMatrix(2,C) == import from List List C matrix [[real x + imaginary()*imagI(x), imagJ x + imaginary()*imagK(x)], [-imagJ(x) + imaginary()*imagK(x), real x - imaginary()*imagI(x)]] -- Define a function that produces the Pauli basis representation of the biquaternion siglist(x:%):List C == [real x, -imaginary()*imagK(x),-imaginary()*imagJ(x),imaginary()*imagI(x)] sig0:% == quatern(1,0,0,0) sig1:% == imaginary() * quatern(0,0,0,1) sig2:% == imaginary() * quatern(0,0,1,0) sig3:% == -imaginary() * quatern(0,1,0,0) -- Define the quaternion derivative (Morgan, 2001, Eq. 2) if Complex(Expression(R)) has PartialDifferentialRing(Symbol) then D(q:%,x:Symbol,y:Symbol,z:Symbol):% == sig1*D(q,x)+sig2*D(q,y)+sig3*D(q,z) -- Define a biquaternion rotation operator that takes a biquat through a rotation -- of theta radians about the axis defined by the unit q biquat (Morgan 2001, Eq 3). rot(theta:C,q:%):% == import from Integer, SparseMultivariatePolynomial(Integer, Kernel(C)) cos(theta/2::C)::% - imaginary()*q*sin(theta/2::C) ((x:%)/(y:%)):% == x*inv(y) ((x:C)/(y:%)):% == (x::%)*inv(y) ((x:%)/(y:C)):% == x*inv(y::%) abs(q:%):C == sqrt(retract(q*conjugate(q))) exp(q:%):% == import from Integer, SparseMultivariatePolynomial(Integer, Kernel(C)) q-conjugate(q)=0 => exp(retract(q+conjugate(q))/2::C)*sig0 exp(retract(q+conjugate(q))/2::C) * (sig0*cos(abs(q)) + (q-conjugate(q))/abs(q-conjugate(q)) * sin(abs(q))) \end{aldor} \begin{axiom} )show BiQuaternion \end{axiom} \begin{axiom} Q := BiQuaternion Integer q:Q := quatern(q0,q1,q2,q3) \end{axiom} For testing the derivative we define this set of operators \begin{axiom} Ft:=operator 'Ft; Fx:=operator 'Fx; Fy:=operator 'Fy; Fz:=operator 'Fz; \end{axiom} Now form a general quaternion which is a function of x,y,z \begin{axiom} F:Q:=Ft(x,y,z)*sig0()+Fx(x,y,z)*sig1()+Fy(x,y,z)*sig2()+Fz(x,y,z)*sig3() \end{axiom} In the Pauli basis the derivative of this biquat should produce (Morgan 2001, eq 1):: D(Ft+F.sigma)=div(F)+(grad(Ft)+%i*curl(F)).sigma which it does \begin{axiom} siglist(D(F,x,y,z)) \end{axiom} Test (comment out this test later) \begin{axiom} %i::Q abs(%i::Q) abs(q) cos(abs(%i::Q)) \end{axiom} If I've defined these correctly, then the rotation about the x axis defined by qx below by 2 radians should give the same answer as exponentiation to '-%i*qx' (not a very complete test) \begin{axiom} qx:Q:=sig1() siglist(rot(2,qx)) siglist(exp(-%i::Q*qx)) \end{axiom} which it does \begin{axiom} (%%(-1)=%%(-2))@Boolean \end{axiom} I would love to express a proof of equality such as:: rot(theta,q) = exp((-theta/2)*%i*q) for arbitrary real $\theta$ and biquaternion q as I would in Maple. \begin{axiom} theta:Complex Expression Integer := _\theta map(simplify, siglist( rot(theta,q) - exp((-%i*theta/2) * q)))::List Expression Complex Integer \end{axiom} \begin{axiom} map(simplify,siglist(rot(2,qx)))::List Expression Complex Integer \end{axiom}
Biquaternion Calculus Domain
D. Cyganski and Bill Page - July 2007
This version is implemented as a new domain in Aldor .
(1) -> <aldor> #pile #include "axiom"
import from NonNegativeInteger
BiQuaternion(R:Join(OrderedSet,CommutativeRing)): Exports == Implementation where C==>Complex Expression R Exports ==> QuaternionCategory(C) with qlist: List C -> % -- takes a complex list (parameter l) into a quaternion listq: % -> List C -- takes a quaternion into a list matrixq: % -> SquareMatrix(2, C) -- takes a quaternion into a matrix sig0:% sig1:% sig2:% sig3:% siglist: % -> List C -- Pauli basis representation of the biquaternion if Complex(Expression(R)) has PartialDifferentialRing(Symbol) then D: (%, Symbol, Symbol, Symbol) -> % -- quaternion derivative rot: (C, %) -> % -- biquaternion rotation /: (%, %) -> % /: (C, %) -> % /: (%, C) -> % abs: % -> C exp: % -> % coerce: Complex R -> %
Implementation ==> Quaternion C add import from C
coerce(z:Complex R):% == import from Expression(R),ComplexFunctions2(R, Expression R) map(coerce, z)::%
-- Define a function that takes a complex list (parameter l) into a quaternion qlist(l:List C):%== import from Integer quatern(l 1,l 2, l 3, l 4) -- Define a function that takes a quaternion into a list listq(x:%):List C == [real x, imagI x, imagJ x, imagK x] -- Define a function that takes a biquat into a matrix matrixq(x:%):SquareMatrix(2, C) == import from List List C matrix [[real x + imaginary()*imagI(x), imagJ x + imaginary()*imagK(x)], [-imagJ(x) + imaginary()*imagK(x), real x - imaginary()*imagI(x)]] -- Define a function that produces the Pauli basis representation of the biquaternion siglist(x:%):List C == [real x, -imaginary()*imagK(x), -imaginary()*imagJ(x), imaginary()*imagI(x)] sig0:% == quatern(1, 0, 0, 0) sig1:% == imaginary() * quatern(0, 0, 0, 1) sig2:% == imaginary() * quatern(0, 0, 1, 0) sig3:% == -imaginary() * quatern(0, 1, 0, 0) -- Define the quaternion derivative (Morgan, 2001, Eq. 2) if Complex(Expression(R)) has PartialDifferentialRing(Symbol) then D(q:%, x:Symbol, y:Symbol, z:Symbol):% == sig1*D(q, x)+sig2*D(q, y)+sig3*D(q, z) -- Define a biquaternion rotation operator that takes a biquat through a rotation -- of theta radians about the axis defined by the unit q biquat (Morgan 2001, Eq 3). rot(theta:C, q:%):% == import from Integer, SparseMultivariatePolynomial(Integer, Kernel(C)) cos(theta/2::C)::% - imaginary()*q*sin(theta/2::C) ((x:%)/(y:%)):% == x*inv(y) ((x:C)/(y:%)):% == (x::%)*inv(y) ((x:%)/(y:C)):% == x*inv(y::%) abs(q:%):C == sqrt(retract(q*conjugate(q))) exp(q:%):% == import from Integer, SparseMultivariatePolynomial(Integer, Kernel(C)) q-conjugate(q)=0 => exp(retract(q+conjugate(q))/2::C)*sig0 exp(retract(q+conjugate(q))/2::C) * (sig0*cos(abs(q)) + (q-conjugate(q))/abs(q-conjugate(q)) * sin(abs(q)))</aldor>
Compiling FriCAS source code from file /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/7484925992146577797-25px001.as using Aldor compiler and options -O -Fasy -Fao -Flsp -lfricas -Mno-ALDOR_W_WillObsolete -DFriCAS -Y $FRICAS/algebra -I $FRICAS/algebra Use the system command )set compiler args to change these options. "/var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/7484925992146577797-25px001.as",line 2: #include "axiom" ^ [L2 C1] #1 (Error) Could not open file `axiom'.
The )library system command was not called after compilation.
)show BiQuaternion
The )show system command is used to display information about types or partial types. For example,)show Integer will show information about Integer .
BiQuaternion is not the name of a known type constructor. If you want to see information about any operations named BiQuaternion ,issue )display operations BiQuaternion
Q := BiQuaternion Integer
There are no library operations named BiQuaternion Use HyperDoc Browse or issue )what op BiQuaternion to learn if there is any operation containing " BiQuaternion " in its name.
Cannot find a definition or applicable library operation named BiQuaternion with argument type(s) Type
Perhaps you should use "@" to indicate the required return type,or "$" to specify which version of the function you need.
For testing the derivative we define this set of operators
Ft:=operator 'Ft; Fx:=operator 'Fx; Fy:=operator 'Fy; Fz:=operator 'Fz;
Now form a general quaternion which is a function of x,y,z
F:Q:=Ft(x,y, z)*sig0()+Fx(x, y, z)*sig1()+Fy(x, y, z)*sig2()+Fz(x, y, z)*sig3()
Q is not a valid type.
In the Pauli basis the derivative of this biquat should produce (Morgan 2001, eq 1):
D(Ft+F.sigma)=div(F)+(grad(Ft)+%i*curl(F)).sigma
which it does
siglist(D(F,x, y, z))
There are no library operations named D having 4 argument(s) though there are 11 exposed operation(s) and 4 unexposed operation(s) having a different number of arguments. Use HyperDoc Browse,or issue )what op D to learn what operations contain " D " in their names, or issue )display op D to learn more about the available operations.
Cannot find a definition or applicable library operation named D with argument type(s) Variable(F) Variable(x) Variable(y) Variable(z)
Perhaps you should use "@" to indicate the required return type,or "$" to specify which version of the function you need.
(comment out this test later)
%i::Q
Q is not a valid type.
If I've defined these correctly, then the rotation about the x axis defined by qx below by 2 radians
should give the same answer as exponentiation to -%i*qx
(not a very complete test)
qx:Q:=sig1()
Q is not a valid type.
which it does
(%%(-1)=%%(-2))@Boolean
Cannot supply value for step 0 because 1 is the first step.
I would love to express a proof of equality such as:
rot(theta,q) = exp((-theta/2)*%i*q)
for arbitrary real and biquaternion q as I would in Maple.
theta:Complex Expression Integer := _\theta
(1) |
map(simplify,siglist( rot(theta, q) - exp((-%i*theta/2) * q)))::List Expression Complex Integer
There are no library operations named rot Use HyperDoc Browse or issue )what op rot to learn if there is any operation containing " rot " in its name.
Cannot find a definition or applicable library operation named rot with argument type(s) Complex(Expression(Integer)) Variable(q)
Perhaps you should use "@" to indicate the required return type,or "$" to specify which version of the function you need.
map(simplify,siglist(rot(2, qx)))::List Expression Complex Integer
There are no library operations named rot Use HyperDoc Browse or issue )what op rot to learn if there is any operation containing " rot " in its name.
Cannot find a definition or applicable library operation named rot with argument type(s) PositiveInteger Variable(qx)
Perhaps you should use "@" to indicate the required return type,or "$" to specify which version of the function you need.