aldor
#include "axiom"
#pile
#library lBasics "basics.ao"
import from lBasics
define AutomorphismCategory(Obj:Category,A:Obj):Category == Groups with
aut: (A->A,A->A) -> % -- create an automorphism from a morphism and it's inverse
aut: % ->(A->A,A->A) -- create a morphism and it's inverse from an automorphism
+++
+++ If X is an object in any category, Aut X given below is the group
+++ of automorphisms. If the category has Set and CountablyInfinite,
+++ autmorphisms are said to be equal if they have equal values at each
+++ point in their domain.
+++
define Automorphism(Obj:Category):Category == with
Aut: (A:Obj) -> AutomorphismCategory (Obj,A)
default
Aut(A:Obj):AutomorphismCategory(Obj,A) ==
WW0:AutomorphismCategory(Obj,A) == add
Rep == Record(iso:A->A,isi:A->A); import from Rep
1:% == per [(a:A):A +-> a, (a:A):A +-> a]
(x:%)=(y:%):Boolean ==
A has CountablyFinite with Set =>
import from A
forall? ( ((rep x).iso)(a) = ((rep y).iso)(a) for a in (elements$A)() )
error "Equality is not available for these automorphisms."
import from o(Obj,A,A,A)
(g:%)*(f:%):% == per [ ((rep g).iso) ** ((rep f).iso) , ((rep f).isi) ** ((rep g).isi) ]
inv(f:%):% == per [ (rep f).isi, (rep f).iso ]
aut(isomorphism:A->A,isomorphismInverse:A->A):% == per [isomorphism,isomorphismInverse]
aut(f:%):(A->A,A->A) == explode rep f
coerce(f:%):OutputForm == message "[Automorphism]"
WW0 add
define EndomorphismCategory(Obj:Category,A:Obj):Category == Monoids with
end: (A->A) -> % -- create an endomorphisms from a morphism
end: % -> (A->A) -- create a morphism from an endomorphism
+++
+++ If X is an object in any category, End X given below is the monoid
+++ of endomorphisms. If the category has Set and CountablyInfinite,
+++ endomorphisms are computed to be equal if they have equal values at
+++ each point in their domain.
+++
define Endomorphism(Obj:Category):Category == with
End: (A:Obj) -> EndomorphismCategory(Obj,A)
default
End(A:Obj):EndomorphismCategory(Obj,A) ==
WW1:EndomorphismCategory(Obj,A) == add
Rep ==> A->A
1:% == per ( (a:A):A +-> a )
import from o(Obj,A,A,A)
(x:%)=(y:%):Boolean ==
A has CountablyFinite with Set =>
import from A
forall? ( (rep x) a = (rep y) a for a in (elements$A)() )
error "Equality is not available for endomorphisms."
(g:%)*(f:%):% == per ( (rep g)**(rep f) )
end(f:A->A):% == per f
end(f:%):(A->A) == rep f
coerce(f:%):OutputForm == message "[Endomorphism]"
WW1 add
define Morphisms(Obj:Category):Category == Automorphism Obj with Endomorphism Obj
aldor
Compiling FriCAS source code from file
/var/zope2/var/LatexWiki/1389579592771181608-25px001.as using
AXIOM-XL compiler and options
-O -Fasy -Fao -Flsp -laxiom -Mno-AXL_W_WillObsolete -DAxiom -Y $AXIOM/algebra
Use the system command )set compiler args to change these
options.
#1 (Warning) Deprecated message prefix: use `ALDOR_' instead of `_AXL'
Compiling Lisp source code from file
./1389579592771181608-25px001.lsp
Issuing )library command for 1389579592771181608-25px001
Reading /var/zope2/var/LatexWiki/1389579592771181608-25px001.asy
Morphisms is now explicitly exposed in frame initial
Morphisms will be automatically loaded when needed from
/var/zope2/var/LatexWiki/1389579592771181608-25px001
Endomorphism is now explicitly exposed in frame initial
Endomorphism will be automatically loaded when needed from
/var/zope2/var/LatexWiki/1389579592771181608-25px001
AutomorphismCategory is now explicitly exposed in frame initial
AutomorphismCategory will be automatically loaded when needed from
/var/zope2/var/LatexWiki/1389579592771181608-25px001
EndomorphismCategory is now explicitly exposed in frame initial
EndomorphismCategory will be automatically loaded when needed from
/var/zope2/var/LatexWiki/1389579592771181608-25px001
Automorphism is now explicitly exposed in frame initial
Automorphism will be automatically loaded when needed from
/var/zope2/var/LatexWiki/1389579592771181608-25px001