looking for completion of pendulum (constrained motion)
equations using multiindex notation (1 independent variable [t] and 3 dependent variables [x,y,F])
fricas
(1) -> jb:=IJB('t,'u,'p,1,5);
Type: Type
fricas
jbe:=JBE jb;
Type: Type
fricas
de := JDE(jb, jbe);
Type: Type
fricas
ck := CKP(jb, jbe);
Type: Type
fricas
eq1:jbe := m*P(4,[1]) + U(1)/L*U(3)
Type: JetBundleExpression
?(IndexedJetBundle
?(t,
u,
p,
1,
5))
fricas
eq2:jbe := m*P(5,[1]) + U(2)/L*U(3) + m*g
Type: JetBundleExpression
?(IndexedJetBundle
?(t,
u,
p,
1,
5))
fricas
eq3:jbe := U(1)^2 + U(2)^2 - L^2
Type: JetBundleExpression
?(IndexedJetBundle
?(t,
u,
p,
1,
5))
fricas
eq4:jbe := P(1,[1]) - U(4)
Type: JetBundleExpression
?(IndexedJetBundle
?(t,
u,
p,
1,
5))
fricas
eq5:jbe := P(2,[1]) - U(5)
Type: JetBundleExpression
?(IndexedJetBundle
?(t,
u,
p,
1,
5))
fricas
printSys([eq1,eq2,eq3,eq4,eq5])$de
fricas
pendulum:de := makeSystem [eq1,eq2,eq3,eq4,eq5]
Type: JetDifferentialEquation
?(IndexedJetBundle
?(t,
u,
p,
1,
5),
JetBundleExpression
?(IndexedJetBundle
?(t,
u,
p,
1,
5)))
fricas
setOutMode(14)$ck
Type: NonNegativeInteger
?
fricas
setRedMode(1)$ck
Type: NonNegativeInteger
?
fricas
complete(pendulum)$ck
Type: Void