login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Consider a noncommutative group ring over commuting polynomials

fricas
(1) -> NPOLY:=MonoidRing(Polynomial(Fraction(Integer)),FreeGroup(Symbol))

\label{eq1}\hbox{\axiomType{MonoidRing}\ } \left({{\hbox{\axiomType{Polynomial}\ } \left({\hbox{\axiomType{Fraction}\ } \left({\hbox{\axiomType{Integer}\ }}\right)}\right)}, \:{\hbox{\axiomType{FreeGroup}\ } \left({\hbox{\axiomType{Symbol}\ }}\right)}}\right)(1)
Type: Type

Generators

fricas
x:NPOLY:='x::FreeGroup Symbol

\label{eq2}x(2)
Type: MonoidRing?(Polynomial(Fraction(Integer)),FreeGroup?(Symbol))
fricas
y:NPOLY:='y::FreeGroup Symbol

\label{eq3}y(3)
Type: MonoidRing?(Polynomial(Fraction(Integer)),FreeGroup?(Symbol))
fricas
x':NPOLY:=('x::FreeGroup Symbol)^(-1)

\label{eq4}{x}^{- 1}(4)
Type: MonoidRing?(Polynomial(Fraction(Integer)),FreeGroup?(Symbol))
fricas
y':NPOLY:=('y::FreeGroup Symbol)^(-1)

\label{eq5}{y}^{- 1}(5)
Type: MonoidRing?(Polynomial(Fraction(Integer)),FreeGroup?(Symbol))
fricas
a:POLY FRAC INT := 'a::Symbol

\label{eq6}a(6)
Type: Polynomial(Fraction(Integer))

Example

fricas
p:=x*y*x+y

\label{eq7}{x \  y \  x}+ y(7)
Type: MonoidRing?(Polynomial(Fraction(Integer)),FreeGroup?(Symbol))
fricas
(p+3*a+1)*x'

\label{eq8}{y \ {{x}^{- 1}}}+{x \  y}+{{\left({3 \  a}+ 1 \right)}\ {{x}^{- 1}}}(8)
Type: MonoidRing?(Polynomial(Fraction(Integer)),FreeGroup?(Symbol))




  Subject:   Be Bold !!
  ( 15 subscribers )  
Please rate this page: