Consider a noncommutative group ring over commuting polynomials
fricas
(1) -> NPOLY:=MonoidRing(Polynomial(Fraction(Integer)),FreeGroup(Symbol))
Type: Type
Generators
fricas
x:NPOLY:='x::FreeGroup Symbol
Type: MonoidRing
?(Polynomial(Fraction(Integer)),
FreeGroup
?(Symbol))
fricas
y:NPOLY:='y::FreeGroup Symbol
Type: MonoidRing
?(Polynomial(Fraction(Integer)),
FreeGroup
?(Symbol))
fricas
x':NPOLY:=('x::FreeGroup Symbol)^(-1)
Type: MonoidRing
?(Polynomial(Fraction(Integer)),
FreeGroup
?(Symbol))
fricas
y':NPOLY:=('y::FreeGroup Symbol)^(-1)
Type: MonoidRing
?(Polynomial(Fraction(Integer)),
FreeGroup
?(Symbol))
fricas
a:POLY FRAC INT := 'a::Symbol
Type: Polynomial(Fraction(Integer))
Example
fricas
p:=x*y*x+y
Type: MonoidRing
?(Polynomial(Fraction(Integer)),
FreeGroup
?(Symbol))
fricas
(p+3*a+1)*x'
Type: MonoidRing
?(Polynomial(Fraction(Integer)),
FreeGroup
?(Symbol))