|
|
last edited 11 years ago by page |
1 2 3 | ||
Editor: 127.0.0.1
Time: 2007/11/11 11:54:18 GMT-8 |
||
Note: transferred from axiom-developer |
changed: - !LUDecomposition (LUD) LU decomposition for ordinary matrices. \begin{spad} )abb package LUD LUDecomposition Sy ==> Symbol L ==> List V ==> Vector VD ==> Vector D MD ==> Matrix D FD ==> Fraction D MFD ==> Matrix FD I ==> Integer NNI ==> NonNegativeInteger B ==> Boolean OUT ==> OutputForm ROWREC ==> Record(Indices:L C, Entries:L D) iter ==> "iterated"::Sy rand ==> "random"::Sy ++ Description: ++ \axiomType{LUDecomposition} contains procedures to solve linear systems of ++ equations or to compute inverses using a LU decomposition. LUDecomposition(D:Field) : Cat == Def where Cat ==> with LUDecomp : MD -> Record(LU:MD, Perm:V I, Pivots:L D) ++ \axiom{LUDecomp(A)} computes a LU decomposition of \axiom{A} ++ using the algorithm of Crout. \axiom{LU} contains both triangular ++ matrices; \axiom{Perm} is the permutation used for partial ++ pivoting and \axiom{Pivots} yields the used pivots. LUSolve : (MD, V I, V D) -> V D ++ \axiom{LUSolve(LU,Perm,B)} uses a previously computed LU ++ decomposition to solve a linear system with right hand side ++ \axiom{B}. \axiom{LU} and \axiom{Perm} are as given by ++ \axiom{LUDecomp}. LUInverse : MD -> Record(Inv:MD, Pivots:L D) ++ \axiom{LUInverse(A)} computes the inverse of \axiom{A} using a LU ++ decomposition. Def ==> add LUDecomp(AA:MD):Record(LU:MD, Perm:V I, Pivots:L D) == -- LU decomposition using Crout's algorithm with partial pivoting. A := copy AA minR := minRowIndex A; maxR := maxRowIndex A minC := minColIndex A; maxC := maxColIndex A maxR^=maxC => error "LU decomposition only of square matrices" PermV:V I := new((maxR-minR+1)::NNI,0) Pivs:L D := empty for j in minC..maxC repeat for i in minR..(j-1) repeat s := qelt(A,i,j) for k in minR..(i-1) repeat s := s - qelt(A,i,k)*qelt(A,k,j) qsetelt!(A,i,j,s) i0:I := -1 for i in j..maxR repeat s := qelt(A,i,j) for k in minC..(j-1) repeat s := s - qelt(A,i,k)*qelt(A,k,j) qsetelt!(A,i,j,s) if not(zero? s) and i0<0 then i0 := i -- first non-zero pivot i0<0 => error "singular matrix in LUDecomp" if j^=i0 then swapRows!(A,j,i0) qsetelt!(PermV,j,i0) Pivs := cons(qelt(A,j,j),Pivs) if j^=maxC then d := 1/qelt(A,j,j) for k in (j+1)..maxR repeat qsetelt!(A,k,j,d*qelt(A,k,j)) [A,PermV,Pivs] LUSolve(LU:MD,Perm:V I,XX:V D):V D == -- Solves LU decomposed linear system for right hand side XX X := copy XX minR := minRowIndex LU; maxR := maxRowIndex LU maxIndex(X)^=maxR => error "Wrong dimensions in LUSolve" ii:I := -1 for i in minR..maxR repeat -- forward substitution ip := qelt(Perm,i) s := qelt(X,ip) qsetelt!(X,ip,qelt(X,i)) if ii>=0 then for j in ii..(i-1) repeat s := s - qelt(LU,i,j)*qelt(X,j) else if not zero? s then ii := i qsetelt!(X,i,s) for i in maxR..minR by -1 repeat -- back substitution s := qelt(X,i) for j in (i+1)..maxR repeat s := s - qelt(LU,i,j)*qelt(X,j) qsetelt!(X,i,s/qelt(LU,i,i)) X LUInverse(A:MD):Record(Inv:MD, Pivots:L D) == -- Inversion via LU decomposition Alu := LUDecomp A n := ncols A res:MD := new(n,n,0) for i in minRowIndex(A)..maxRowIndex(A) repeat v:V D := new(n,0) qsetelt!(v,i,1) res := setColumn!(res,i,LUSolve(Alu.LU,Alu.Perm,v)) [res,Alu.Pivots] \end{spad} \begin{axiom} A:=matrix [[subscript('a,[10*i+j]) for i in 1..3] for j in 1..3] diagProduct(x) == reduce(*,[x(i,i) for i in 1..nrows(x)]) B:=LUDecomp A; B.LU B.Perm B.Pivots diagProduct(B.LU)=determinant A %::Boolean \end{axiom}
LUDecomposition (LUD)
LU decomposition for ordinary matrices.
)abb package LUD LUDecomposition
Sy ==> Symbol L ==> List V ==> Vector VD ==> Vector D MD ==> Matrix D FD ==> Fraction D MFD ==> Matrix FD I ==> Integer NNI ==> NonNegativeInteger B ==> Boolean OUT ==> OutputForm
ROWREC ==> Record(Indices:L C, Entries:L D)
iter ==> "iterated"::Sy rand ==> "random"::Sy
++ Description: ++ \axiomType{LUDecomposition} contains procedures to solve linear systems of ++ equations or to compute inverses using a LU decomposition.
LUDecomposition(D:Field) : Cat == Def where
Cat ==> with
LUDecomp : MD -> Record(LU:MD, Perm:V I, Pivots:L D) ++ \axiom{LUDecomp(A)} computes a LU decomposition of \axiom{A} ++ using the algorithm of Crout. \axiom{LU} contains both triangular ++ matrices; \axiom{Perm} is the permutation used for partial ++ pivoting and \axiom{Pivots} yields the used pivots.
LUSolve : (MD, V I, V D) -> V D ++ \axiom{LUSolve(LU,Perm,B)} uses a previously computed LU ++ decomposition to solve a linear system with right hand side ++ \axiom{B}. \axiom{LU} and \axiom{Perm} are as given by ++ \axiom{LUDecomp}.
LUInverse : MD -> Record(Inv:MD, Pivots:L D) ++ \axiom{LUInverse(A)} computes the inverse of \axiom{A} using a LU ++ decomposition.
Def ==> add
LUDecomp(AA:MD):Record(LU:MD, Perm:V I, Pivots:L D) == -- LU decomposition using Crout's algorithm with partial pivoting. A := copy AA minR := minRowIndex A; maxR := maxRowIndex A minC := minColIndex A; maxC := maxColIndex A maxR^=maxC => error "LU decomposition only of square matrices" PermV:V I := new((maxR-minR+1)::NNI,0) Pivs:L D := empty
for j in minC..maxC repeat for i in minR..(j-1) repeat s := qelt(A,i,j) for k in minR..(i-1) repeat s := s - qelt(A,i,k)*qelt(A,k,j) qsetelt!(A,i,j,s)
i0:I := -1 for i in j..maxR repeat s := qelt(A,i,j) for k in minC..(j-1) repeat s := s - qelt(A,i,k)*qelt(A,k,j) qsetelt!(A,i,j,s) if not(zero? s) and i0<0 then i0 := i -- first non-zero pivot
i0<0 => error "singular matrix in LUDecomp" if j^=i0 then swapRows!(A,j,i0) qsetelt!(PermV,j,i0) Pivs := cons(qelt(A,j,j),Pivs)
if j^=maxC then d := 1/qelt(A,j,j) for k in (j+1)..maxR repeat qsetelt!(A,k,j,d*qelt(A,k,j))
[A,PermV,Pivs]
LUSolve(LU:MD,Perm:V I,XX:V D):V D == -- Solves LU decomposed linear system for right hand side XX X := copy XX minR := minRowIndex LU; maxR := maxRowIndex LU maxIndex(X)^=maxR => error "Wrong dimensions in LUSolve" ii:I := -1
for i in minR..maxR repeat -- forward substitution ip := qelt(Perm,i) s := qelt(X,ip) qsetelt!(X,ip,qelt(X,i)) if ii>=0 then for j in ii..(i-1) repeat s := s - qelt(LU,i,j)*qelt(X,j) else if not zero? s then ii := i qsetelt!(X,i,s)
for i in maxR..minR by -1 repeat -- back substitution s := qelt(X,i) for j in (i+1)..maxR repeat s := s - qelt(LU,i,j)*qelt(X,j) qsetelt!(X,i,s/qelt(LU,i,i))
X
LUInverse(A:MD):Record(Inv:MD, Pivots:L D) == -- Inversion via LU decomposition Alu := LUDecomp A n := ncols A res:MD := new(n,n,0)
for i in minRowIndex(A)..maxRowIndex(A) repeat v:V D := new(n,0) qsetelt!(v,i,1) res := setColumn!(res,i,LUSolve(Alu.LU,Alu.Perm,v))
[res,Alu.Pivots]
Compiling FriCAS source code from file /var/zope2/var/LatexWiki/1676865482560581358-25px001.spad using old system compiler. LUD abbreviates package LUDecomposition processing macro definition Sy ==> Symbol
processing macro definition L ==> List
processing macro definition V ==> Vector
processing macro definition VD ==> Vector D
processing macro definition MD ==> Matrix D
processing macro definition FD ==> Fraction D
processing macro definition MFD ==> Matrix FD
processing macro definition I ==> Integer
processing macro definition NNI ==> NonNegativeInteger
processing macro definition B ==> Boolean
processing macro definition OUT ==> OutputForm
processing macro definition ROWREC ==> Record(Indices: L C,Entries: L D)
processing macro definition iter ==> ::(iterated,Sy)
processing macro definition rand ==> ::(random,Sy)
processing macro definition Cat ==> -- the constructor category processing macro definition Def ==> -- the constructor capsule ------------------------------------------------------------------------ initializing NRLIB LUD for LUDecomposition compiling into NRLIB LUD compiling exported LUDecomp : Matrix D -> Record(LU: Matrix D,Perm: Vector Integer,Pivots: List D) ****** comp fails at level 3 with expression: ****** error in function LUDecomp
(SEQ (LET A (|copy| AA)) (LET |minR| (|minRowIndex| A)) (LET |maxR| (|maxRowIndex| A)) (LET |minC| (|minColIndex| A)) (LET |maxC| (|maxColIndex| A)) (LET #:G682 | << | (^= |maxR| |maxC|) | >> |) (|exit| 1 (IF #:G682 (|error| "LU decomposition only of square matrices") (SEQ (LET (|:| |PermV| (|Vector| (|Integer|))) (|new| (|::| (+ (- |maxR| |minR|) 1) (|NonNegativeInteger|)) 0)) (LET (|:| |Pivs| (|List| D)) |empty|) (REPEAT (STEP |j| |minC| 1 |maxC|) (SEQ (REPEAT (STEP |i| |minR| 1 (- |j| 1)) (SEQ (LET |s| (|qelt| A |i| |j|)) (REPEAT (STEP |k| |minR| 1 (- |i| 1)) (LET |s| (- |s| (* (|qelt| A |i| |k|) (|qelt| A |k| |j|))))) (|exit| 1 (|qsetelt!| A |i| |j| |s|)))) (LET (|:| |i0| (|Integer|)) (- 1)) (REPEAT (STEP |i| |j| 1 |maxR|) (SEQ (LET |s| (|qelt| A |i| |j|)) (REPEAT (STEP |k| |minC| 1 (- |j| 1)) (LET |s| (- |s| (* (|qelt| A |i| |k|) (|qelt| A |k| |j|))))) (|qsetelt!| A |i| |j| |s|) (LET #:G683 (|zero?| |s|)) (|exit| 1 (IF #:G683 |noBranch| (IF (< |i0| 0) (LET |i0| |i|) |noBranch|))))) (|exit| 1 (IF (< |i0| 0) (|error| "singular matrix in LUDecomp") (SEQ (SEQ (LET #:G684 (^= |j| |i0|)) (|exit| 1 (IF #:G684 (|swapRows!| A |j| |i0|) |noBranch|))) (|qsetelt!| |PermV| |j| |i0|) (LET |Pivs| (|cons| (|qelt| A |j| |j|) |Pivs|)) (LET #:G685 (^= |j| |maxC|)) (|exit| 1 (IF #:G685 (SEQ (LET |d| (/ 1 (|qelt| A |j| |j|))) (|exit| 1 (REPEAT (STEP |k| (+ |j| 1) 1 |maxR|) (|qsetelt!| A |k| |j| (* |d| (|qelt| A |k| |j|)))))) |noBranch|))))))) (|exit| 1 (|construct| A |PermV| |Pivs|)))))) ****** level 3 ****** $x:= (^= maxR maxC) $m:= $EmptyMode $f:= ((((|maxC| #) (|minC| #) (|maxR| #) (|minR| #) ...)))
>> Apparent user error: NoValueMode is an unknown mode
A:=matrix [[subscript('a,[10*i+j]) for i in 1..3] for j in 1..3]
(1) |
diagProduct(x) == reduce(*,[x(i,i) for i in 1..nrows(x)])
B:=LUDecomp A;
There are no library operations named LUDecomp Use HyperDoc Browse or issue )what op LUDecomp to learn if there is any operation containing " LUDecomp " in its name.
Cannot find a definition or applicable library operation named LUDecomp with argument type(s) Matrix(Polynomial(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. B.LU
There are no library operations named B Use HyperDoc Browse or issue )what op B to learn if there is any operation containing " B " in its name.
Cannot find a definition or applicable library operation named B with argument type(s) Variable(LU)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. B.Perm
There are no library operations named B Use HyperDoc Browse or issue )what op B to learn if there is any operation containing " B " in its name.
Cannot find a definition or applicable library operation named B with argument type(s) Variable(Perm)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. B.Pivots
There are no library operations named B Use HyperDoc Browse or issue )what op B to learn if there is any operation containing " B " in its name.
Cannot find a definition or applicable library operation named B with argument type(s) Variable(Pivots)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. diagProduct(B.LU)=determinant A
There are no library operations named B Use HyperDoc Browse or issue )what op B to learn if there is any operation containing " B " in its name.
Cannot find a definition or applicable library operation named B with argument type(s) Variable(LU)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. %::Boolean
Cannot convert from type Void to Boolean for value "()"