1 2 | ||
Editor: test1
Time: 2013/03/23 00:15:59 GMT+0 |
||
Note: |
changed: - RepSum == FreeSum(FreeAbelianGroup A,FreeAbelianGroup %) - RepPrd == FreeProduct(FreeMonoid A,FreeMonoid %) - Rep == Union(sum:RepSum,prd:RepPrd) RepSum ==> FreeSum(FreeAbelianGroup A,FreeAbelianGroup %) RepPrd ==> FreeProduct(FreeMonoid A,FreeMonoid %) Rep ==> Union(sum:RepSum,prd:RepPrd) changed: - if r case sum then infix(_+, [ _ if r case sum then infix('+::OutputForm, [ _ changed: - infix(_+, [ _ infix('+::OutputForm, [ _
(1) -> )lib FPROD
FreeProduct is now explicitly exposed in frame initial FreeProduct will be automatically loaded when needed from /var/aw/var/LatexWiki/FPROD.NRLIB/FPROD
)lib FSUM
FreeSum is now explicitly exposed in frame initial FreeSum will be automatically loaded when needed from /var/aw/var/LatexWiki/FSUM.NRLIB/FSUM
)abbrev domain FRING FreeRing ++ Description: ++ One can construct the free algebra R<E> on any set A of generators. ++ Since rings may be regarded as Z-algebras,a free ring on A can be ++ defined as the free algebra Z<E> ++ Ref: http://en.wikipedia.org/wiki/Free_ring FreeRing(A:SetCategory):Ring with if A has Comparable then Comparable coerce:A->% _-:(%, %)->% == add RepSum ==> FreeSum(FreeAbelianGroup A, FreeAbelianGroup %) RepPrd ==> FreeProduct(FreeMonoid A, FreeMonoid %) Rep ==> Union(sum:RepSum, prd:RepPrd) rep(x:%):Rep == x pretend Rep per(x:Rep):% == x pretend % coerce(x:%):OutputForm == r:=rep(x) if x=0 or x=1 then return coerce(r) if r case sum then infix('+::OutputForm, [ _ if is2(s) then _ infix('+::OutputForm, [ _ if t.exp=1 then coerce(t.gen) _ else if t.gen=1 then coerce(t.exp) else coerce(t.exp)*coerce(t.gen) _ for t in terms(retract(s)@FreeAbelianGroup(%)) ]) _ else coerce(s) for s in terms(r.sum)]) else blankSeparate [ _ if is2(s) then _ blankSeparate [ _ if t.exp=1 then paren(coerce(t.gen)) _ else paren(coerce(t.gen)^coerce(t.exp)) _ for t in factors(retract(s)@FreeMonoid(%)) ] _ else coerce(s) for s in factors(r.prd)]
--coerce(x:A):% == per [in1(coerce x)$RepSum] coerce(x:A):% == per [in1(coerce x)$RepPrd]
Zero():% == per [0$RepSum] One():% == per [1$RepPrd] (x:% = y:%):Boolean == (rep(x) = rep(y))$Rep (x1:% + x2:%):% == if x1=0 then return x2 if x2=0 then return x1 r1:=rep(x1); r2:=rep(x2) if r1 case sum then s1:=r1.sum else s1:=in2(coerce x1)$RepSum if r2 case sum then s2:=r2.sum else s2:=in2(coerce x2)$RepSum per [s1+s2] (x1:% * x2:%):% == if x1=0 then return 0 if x2=0 then return 0 if x1=1 then return x2 if x2=1 then return x1 r1:=rep(x1); r2:=rep(x2) if r1 case prd then p1:=r1.prd else p1:=in2(coerce x1)$RepPrd if r2 case prd then p2:=r2.prd else p2:=in2(coerce x2)$RepPrd per [p1*p2] _-(x:%):% == if x=0 then return 0 r:=rep(x) if r case sum then s:=r.sum else s:=in2(coerce x)$RepSum per [-s] (x:% - y:%):% == x + (-y) (n:Integer * x:%):% == if x=0 then return 0 if n>0 then return (n-1) * x + x if n<0 then return (n+1) * x - x return 0 coerce(x:Integer):% == x*1
Compiling FriCAS source code from file /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/6698586189056097663-25px002.spad using old system compiler. FRING abbreviates domain FreeRing ------------------------------------------------------------------------ initializing NRLIB FRING for FreeRing compiling into NRLIB FRING processing macro definition RepSum ==> FreeSum(FreeAbelianGroup A,FreeAbelianGroup %) processing macro definition RepPrd ==> FreeProduct(FreeMonoid A, FreeMonoid %) processing macro definition Rep ==> Union(sum: FreeSum(FreeAbelianGroup A, FreeAbelianGroup %), prd: FreeProduct(FreeMonoid A, FreeMonoid %)) compiling local rep : % -> Union(sum: FreeSum(FreeAbelianGroup A, FreeAbelianGroup %), prd: FreeProduct(FreeMonoid A, FreeMonoid %)) FRING;rep is replaced by x Time: 0 SEC.
compiling local per : Union(sum: FreeSum(FreeAbelianGroup A,FreeAbelianGroup %), prd: FreeProduct(FreeMonoid A, FreeMonoid %)) -> % FRING;per is replaced by x Time: 0 SEC.
compiling exported coerce : % -> OutputForm Internal Error Error while instantiating type FreeAbelianGroupA
f:=FreeRing(Symbol)
FreeRing is an unknown constructor and so is unavailable. Did you mean to use -> but type something different instead?