login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Recenty in sci.math.symbolic there was a question if


\label{eq1}
b^2 \geq (a - c)^2
(1)
and

\label{eq2}
a^2 \geq b^2
(2)
implies

\label{eq3}
c^2 \geq (a + b)^2
(3)
or

\label{eq4}
c^2 \geq (a - b)^2.
(4)

This can be proved by an elementary argument. Below w show purely mechanical way based on cylindrical algebraic decomposition (CAD).

fricas
(1) -> rC := RealClosure(Fraction(Integer))

\label{eq5}\hbox{\axiomType{RealClosure}\ } \left({\hbox{\axiomType{Fraction}\ } \left({\hbox{\axiomType{Integer}\ }}\right)}\right)(5)
Type: Type
fricas
pR := POLY(rC)

\label{eq6}\hbox{\axiomType{Polynomial}\ } \left({\hbox{\axiomType{RealClosure}\ } \left({\hbox{\axiomType{Fraction}\ } \left({\hbox{\axiomType{Integer}\ }}\right)}\right)}\right)(6)
Type: Type
fricas
-- Replace inequalies by differences of sides
lp := [b^2 - (a - c)^2, a^2 - b^2, c^2 - (a + b)^2, c^2 - (a - b)^2]

\label{eq7}\begin{array}{@{}l}
\displaystyle
\left[{-{{c}^{2}}+{2 \  a \  c}+{{b}^{2}}-{{a}^{2}}}, \:{-{{b}^{2}}+{{a}^{2}}}, \:{{{c}^{2}}-{{b}^{2}}-{2 \  a \  b}-{{a}^{2}}}, \: \right.
\
\
\displaystyle
\left.{{{c}^{2}}-{{b}^{2}}+{2 \  a \  b}-{{a}^{2}}}\right] 
(7)
Type: List(Polynomial(Integer))
fricas
-- Do CAD
cd := cylindricalDecomposition(lp::List(pR)
                              )$CylindricalAlgebraicDecompositionPackage(rC)

\label{eq8}\begin{array}{@{}l}
\displaystyle
\left[{\left({\left\{{c = - 4}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 4}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{4}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{1}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{1}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{5}{4}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{3}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{5}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{4}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{1}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{1}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c ={\frac{5}{4}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{3}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c ={\frac{5}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = - 3}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = -{\frac{3}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 4}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 4}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = - 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \:  \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\%A 1}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \:  \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \:  \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\%A 2}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \:  \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \:  \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 0}, \:  \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 0}, \:  \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 0}, \:  \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \:  \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\%A 3}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \:  \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \:  \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\%A 4}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \:  \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 0}, \:  \mbox{\rm false} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 4}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 4}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = -{\frac{3}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{5}{4}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{1}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{1}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c ={\frac{5}{4}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c ={\frac{3}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c ={\frac{5}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = -{\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = -{\frac{5}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{3}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = -{\frac{5}{4}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\left({{\left\{{c = -{\frac{1}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}}\right)}, \right.
\
\
\displaystyle
\left.\:{\left({\left\{{c = 0}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{1}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{5}{4}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{5}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b ={\frac{1}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = -{\frac{3}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c ={\frac{3}{2}}}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 4}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 3}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = - 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 0}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 1}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 3}, \:  \mbox{\rm false} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}, \: \right.
\
\
\displaystyle
\left.{\left({\left\{{c = 4}, \:  \mbox{\rm true} \right\}}, \:{\left\{{b = 2}, \:  \mbox{\rm true} \right\}}, \:{\left\{{a = 1}, \:  \mbox{\rm true} \right\}}\right)}\right] 
(8)
Type: List(Cell(RealClosure(Fraction(Integer))))
fricas
-- If implication is false, then there is opposite strict ineqality
-- in the last two inequalities.  Hence, there is counterexample where
-- all inequalities are strict.  Consequently, it is enough to look
-- only at cells of full dimension.
cd3 := [ce for ce in cd | dimension(ce) = 3];
Type: List(Cell(RealClosure(Fraction(Integer))))
fricas
sp3 := [samplePoint(ce) for ce in cd3]::List(List(Fraction(Integer)))

\label{eq9}\begin{array}{@{}l}
\displaystyle
\left[{\left[ - 4, \: - 2, \: - 1 \right]}, \:{\left[ - 2, \: - 2, \: - 1 \right]}, \:{\left[ 0, \: - 2, \: - 1 \right]}, \:{\left[ 2, \: - 2, \: - 1 \right]}, \right.
\
\
\displaystyle
\left.\:{\left[ 4, \: - 2, \: - 1 \right]}, \:{\left[ -{\frac{5}{2}}, \: -{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{5}{4}}, \: -{\frac{1}{2}}, \: - 1 \right]}, \:{\left[ 0, \: -{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{5}{4}}, \: -{\frac{1}{2}}, \: - 1 \right]}, \:{\left[{\frac{5}{2}}, \: -{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{5}{2}}, \:{\frac{1}{2}}, \: - 1 \right]}, \:{\left[ -{\frac{5}{4}}, \:{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \:{\frac{1}{2}}, \: - 1 \right]}, \:{\left[{\frac{5}{4}}, \:{\frac{1}{2}}, \: - 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{5}{2}}, \:{\frac{1}{2}}, \: - 1 \right]}, \:{\left[ - 4, \: 2, \: - 1 \right]}, \:{\left[ - 2, \: 2, \: - 1 \right]}, \:{\left[ 0, \: 2, \: - 1 \right]}, \right.
\
\
\displaystyle
\left.\:{\left[ 2, \: 2, \: - 1 \right]}, \:{\left[ 4, \: 2, \: - 1 \right]}, \:{\left[ - 4, \: - 2, \: 1 \right]}, \:{\left[ - 2, \: - 2, \: 1 \right]}, \:{\left[ 0, \: - 2, \: 1 \right]}, \right.
\
\
\displaystyle
\left.\:{\left[ 2, \: - 2, \: 1 \right]}, \:{\left[ 4, \: - 2, \: 1 \right]}, \:{\left[ -{\frac{5}{2}}, \: -{\frac{1}{2}}, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{5}{4}}, \: -{\frac{1}{2}}, \: 1 \right]}, \:{\left[ 0, \: -{\frac{1}{2}}, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{5}{4}}, \: -{\frac{1}{2}}, \: 1 \right]}, \:{\left[{\frac{5}{2}}, \: -{\frac{1}{2}}, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{5}{2}}, \:{\frac{1}{2}}, \: 1 \right]}, \:{\left[ -{\frac{5}{4}}, \:{\frac{1}{2}}, \: 1 \right]}, \:{\left[ 0, \:{\frac{1}{2}}, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{5}{4}}, \:{\frac{1}{2}}, \: 1 \right]}, \:{\left[{\frac{5}{2}}, \:{\frac{1}{2}}, \: 1 \right]}, \:{\left[ - 4, \: 2, \: 1 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ - 2, \: 2, \: 1 \right]}, \:{\left[ 0, \: 2, \: 1 \right]}, \:{\left[ 2, \: 2, \: 1 \right]}, \:{\left[ 4, \: 2, \: 1 \right]}\right] 
(9)
Type: List(List(Fraction(Integer)))
fricas
vll := [map(p +-> eval(p, [a, b, c], pp), lp) for pp in sp3];
Type: List(List(Polynomial(Fraction(Integer))))
fricas
vlq := vll::List(List(Fraction(Integer)))

\label{eq10}\begin{array}{@{}l}
\displaystyle
\left[{\left[ - 5, \:{12}, \: -{35}, \: - 3 \right]}, \:{\left[ 3, \: 0, \: -{15}, \: 1 \right]}, \:{\left[ 3, \: - 4, \: - 3, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ - 5, \: 0, \: 1, \: -{15}\right]}, \:{\left[ -{2
1}, \:{12}, \: - 3, \: -{35}\right]}, \:{\left[ - 2, \: 6, \: - 8, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{3}{16}}, \:{\frac{21}{16}}, \: -{\frac{33}{1
6}}, \:{\frac{7}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{3}{4}}, \: -{\frac{1}{4}}, \:{\frac{3}{4}}, \:{\frac{3}{4}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{77}{16}}, \:{\frac{21}{16}}, \:{\frac{7}{1
6}}, \: -{\frac{33}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{12}, \: 6, \: - 3, \: - 8 \right]}, \:{\left[ - 2, \: 6, \: - 3, \: - 8 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{3}{16}}, \:{\frac{21}{16}}, \:{\frac{7}{1
6}}, \: -{\frac{33}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{3}{4}}, \: -{\frac{1}{4}}, \:{\frac{3}{4}}, \:{\frac{3}{4}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{77}{16}}, \:{\frac{21}{16}}, \: -{\frac{3
3}{16}}, \:{\frac{7}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{12}, \: 6, \: - 8, \: - 3 \right]}, \:{\left[ - 5, \:{12}, \: - 3, \: -{35}\right]}, \:{\left[ 3, \: 0, \: 1, \: -{15}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 3, \: - 4, \: - 3, \: - 3 \right]}, \:{\left[ - 5, \: 0, \: -{15}, \: 1 \right]}, \:{\left[ -{21}, \:{12}, \: -{35}, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{21}, \:{12}, \: -{35}, \: - 3 \right]}, \:{\left[ - 5, \: 0, \: -{15}, \: 1 \right]}, \:{\left[ 3, \: - 4, \: - 3, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 3, \: 0, \: 1, \: -{15}\right]}, \:{\left[ - 5, \:{12}, \: - 3, \: -{35}\right]}, \:{\left[ -{12}, \: 6, \: - 8, \: - 3 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{77}{16}}, \:{\frac{21}{16}}, \: -{\frac{3
3}{16}}, \:{\frac{7}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{3}{4}}, \: -{\frac{1}{4}}, \:{\frac{3}{4}}, \:{\frac{3}{4}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{3}{16}}, \:{\frac{21}{16}}, \:{\frac{7}{1
6}}, \: -{\frac{33}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ - 2, \: 6, \: - 3, \: - 8 \right]}, \:{\left[ -{12}, \: 6, \: - 3, \: - 8 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{77}{16}}, \:{\frac{21}{16}}, \:{\frac{7}{1
6}}, \: -{\frac{33}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{\frac{3}{4}}, \: -{\frac{1}{4}}, \:{\frac{3}{4}}, \:{\frac{3}{4}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\frac{3}{16}}, \:{\frac{21}{16}}, \: -{\frac{33}{1
6}}, \:{\frac{7}{16}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ - 2, \: 6, \: - 8, \: - 3 \right]}, \:{\left[ -{21}, \:{12}, \: - 3, \: -{35}\right]}, \:{\left[ - 5, \: 0, \: 1, \: -{15}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 3, \: - 4, \: - 3, \: - 3 \right]}, \:{\left[ 3, \: 0, \: -{15}, \: 1 \right]}, \:{\left[ - 5, \:{12}, \: -{3
5}, \: - 3 \right]}\right] 
(10)
Type: List(List(Fraction(Integer)))
fricas
good := true

\label{eq11} \mbox{\rm true} (11)
Type: Boolean
fricas
-- Loop to check validity of formula at each sample point
for vl in vlq repeat
    if vl(1) > 0 and vl(2) > 0 and vl(3) < 0 and vl(4) < 0 then
        good := false
Type: Void
fricas
print good
true
Type: Void

Let us explain this a bit more. CAD for list of polynomials l produces collection of cells such that any boolean formula in equations and inequalites of polynomials in l produces constant value on each cells. And cells cover the whole space. So, to check validity of Boolean formula it is enough to check its validity on each cell. Since value of the formula is constant in the cell it is enough to compute value at single point given by samplePoint. Above we took advantage of another property: closure of sum of cells of full dimension gives the whole space. Since sets on which assumptions and conclusion of our formula hold are closed we can gain a little extra efficiency and ignore cells of lower dimension.




  Subject:   Be Bold !!
  ( 15 subscribers )  
Please rate this page: