login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for BiCartesianTensor revision 1 of 1

1
Editor: Bill Page
Time: 2011/03/01 23:14:48 GMT-8
Note: draft

changed:
-
BiCartesianTensor(dim,R) provides Cartesian tensors with
components belonging to a commutative ring R.  These tensors
can have any number of covariant and contravariant indices.
Each index takes values from -dim..1 or 1..dim.

\begin{spad}
)abbrev domain BITENS BiCartesianTensor
BiCartesianTensor(dim, R): Exports == Implementation where
    NNI ==> NonNegativeInteger
    I   ==> PositiveInteger
    DP  ==> DirectProduct
    SM  ==> SquareMatrix

    dim: NNI
    R: CommutativeRing

    Exports ==> Join(GradedAlgebra(R, DP(2,NNI)), GradedModule(Integer, DP(2,NNI))) with

        coerce: DP(dim, R) -> %
            ++ coerce(v) views a vector over the ring R as a (0,1)-tensor.
        coerce: SM(dim, R)  -> %
            ++ coerce(m) views a matrix on the ring R as a (2,0)-tensor.

        coerce: List R -> %
            ++ coerce([r_1,...,r_dim]) views a list of ring R elements
            ++ as a (1,0)-tensor

        coerce: List % -> %
            ++ coerce([t_1,...,t_dim]) allows tensors to be constructed
            ++ using lists.

        rank: % -> DP(2,NNI)
            ++ rank(t) returns the tensorial rank of t (that is, the
            ++ number of indices).  This is the same as the graded module
            ++ degree.

        elt: (%) -> R
            ++ elt(t) gives the component of a rank 0 tensor.
        elt: (%, List List I) -> R
            ++ elt(t,[[i1,...,in],[ji,...,jm]]) gives a component of a (n,m)-tensor.

        -- This specializes the documentation from GradedAlgebra.
        product: (%,%) -> %
            ++ product(s,t) is the outer product of the tensors s and t.
            ++ For example, if \spad{r = product(s,t)} for rank 2 tensors s and t,
            ++ then \spad{r} is a rank 4 tensor given by
            ++     \spad{r(i,j,k,l) = s(i,j)*t(k,l)}.

        "*": (%, %) -> %
            ++ s*t is the inner product of the tensors s and t which contracts
            ++ the last index of s with the first index of t, i.e.
            ++     \spad{t*s = contract(t,rank t, s, 1)}
            ++     \spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}
            ++ This is compatible with the use of \spad{M*v} to denote
            ++ the matrix-vector inner product.

        contract:  (%, Integer, %, Integer) -> %
            ++ contract(t,i,s,j) is the inner product of tenors s and t
            ++ which sums along the \spad{k1}-th index of
            ++ t and the \spad{k2}-th index of s.
            ++ For example, if \spad{r = contract(s,2,t,1)} for rank 3 tensors
            ++ rank 3 tensors \spad{s} and \spad{t}, then \spad{r} is
            ++ the rank 4 \spad{(= 3 + 3 - 2)} tensor  given by
            ++     \spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.

        contract:  (%, Integer, Integer)    -> %
            ++ contract(t,i,j) is the contraction of tensor t which
            ++ sums along the \spad{i}-th and \spad{j}-th indices.
            ++ For example,  if
            ++ \spad{r = contract(t,1,3)} for a rank 4 tensor t, then
            ++ \spad{r} is the rank 2 \spad{(= 4 - 2)} tensor given by
            ++     \spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.

        transpose: % -> %
            ++ transpose(t) exchanges the first and last indices of t.
            ++ For example, if \spad{r = transpose(t)} for a rank 4 tensor t, then
            ++ \spad{r} is the rank 4 tensor given by
            ++     \spad{r(i,j,k,l) = t(l,j,k,i)}.

        transpose: (%, Integer, Integer) -> %
            ++ transpose(t,i,j) exchanges the \spad{i}-th and \spad{j}-th indices of t.
            ++ For example, if \spad{r = transpose(t,2,3)} for a rank 4 tensor t, then
            ++ \spad{r} is the rank 4 tensor given by
            ++     \spad{r(i,j,k,l) = t(i,k,j,l)}.

        reindex: (%, List Integer) -> %
            ++ reindex(t,[i1,...,idim]) permutes the indices of t.
            ++ For example, if \spad{r = reindex(t, [4,1,2,3])}
            ++ for a rank 4 tensor t,
            ++ then \spad{r} is the rank for tensor given by
            ++     \spad{r(i,j,k,l) = t(l,i,j,k)}.

        kroneckerDelta:  () -> %
            ++ kroneckerDelta() is the (1,1)-tensor defined by
            ++    \spad{kroneckerDelta()(i,j)}
            ++       \spad{= 1  if i = j}
            ++       \spad{= 0 if  i \~= j}

        leviCivitaSymbol: () -> %
            ++ leviCivitaSymbol() is the (\spad{dim},0)-tensor defined by
            ++ \spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1}
            ++ if \spad{i1,...,idim} is an even/is nota /is an odd permutation
            ++ of \spad{minix,...,minix+dim-1}.
        ravel:     % -> List R
            ++ ravel(t) produces a list of (n+m)*dim components from a
            ++ (n,m)-tensor such that \spad{unravel(ravel(t)) = t}.

        unravel:   List R -> %
            ++ unravel(t) produces a (#t/dim,0)-tensor from a list of
            ++ components such that
            ++   \spad{unravel(ravel(t)) = t}.

        sample:    () -> %
            ++ sample() returns an object of type %.

    Implementation ==> add

        PERM  ==> List Vector I  -- permutation of 1..n and 1..m
        INDEX ==> List Vector I  -- vector of n indices and m indices in 1..dim

        Rep := IndexedVector(R,0)
        get   ==> elt$Rep
        set_! ==> setelt$Rep

        -- Use row-major order:
        --   x[[h],[i,j]] <-> x[(h-1)*dim^2+(i-1)*dim+(j-1)]

        n:     Integer
        r,s:   R
        x,y,z: %

        ---- Local stuff
        dim2: NNI := dim^2
        dim3: NNI := dim^3
        dim4: NNI := dim^4

        sample()==kroneckerDelta()$%
        int2index(n: Integer, indv: INDEX): INDEX ==
            n < 0 => error "Index error (too small)"
            rnk := #(indv.1)
            for i in 1..rnk repeat
                qr := divide(n, dim)
                n  := qr.quotient
                indv.1.((rnk-i+1) pretend I) := qr.remainder + 1
            rnk := #(indv.2)
            for i in 1..rnk repeat
                qr := divide(n, dim)
                n  := qr.quotient
                indv.2.((rnk-i+1) pretend I) := qr.remainder + 1
            n ~= 0 => error "Index error (too big)"
            indv

        index2int(indv: INDEX): Integer ==
            n: I := 0
            for i in 1..#(indv.1) repeat
                ix := indv.1.i - 1
                ix<0 or ix>dim-1 => error "Index error (out of range)"
                n := dim*n + ix
            for i in 1..#(indv.2) repeat
                ix := indv.2.i - 1
                ix<0 or ix>dim-1 => error "Index error (out of range)"
                n := dim*n + ix
            n

        lengthRankOrElse(v: Integer): NNI ==
            v = 1    => 0
            v = dim  => 1
            v = dim2 => 2
            v = dim3 => 3
            v = dim4 => 4
            rx := 0
            while v ~= 0 repeat
                qr := divide(v, dim)
                v  := qr.quotient
                if v ~= 0 then
                    qr.remainder ~= 0 => error "Rank is not a whole number"
                    rx := rx + 1
            rx

        -- l must be a list of the numbers 1..#l
        mkPerm(n: NNI, l: List Integer): PERM ==
            #l ~= n =>
                error "The list is not a permutation."
            p:    PERM           := new(n, 0)
            seen: Vector Boolean := new(n, false)
            for i in 1..n for e in l repeat
                e < 1 or e > n => error "The list is not a permutation."
                p.i    := e
                seen.e := true
            for e in 1..n repeat
                not seen.e => error "The list is not a permutation."
            p

        -- permute s according to p into result t.
        permute_!(t: INDEX, s: INDEX, p: PERM): INDEX ==
            for i in 1..#p repeat t.i := s.(p.i)
            t

        -- permsign!(v) = 1, 0, or -1  according as
        -- v is an even, is not, or is an odd permutation of minix..minix+#v-1.
        permsign_!(v: INDEX): Integer ==
            -- sum minix..minix+#v-1.
            maxix := minix+#v-1
            psum  := (((maxix+1)*maxix - minix*(minix-1)) exquo 2)::Integer
            -- +/v ~= psum => 0
            n := 0
            for i in 1..#v repeat n := n + v.i
            n ~= psum => 0
            -- Bubble sort!  This is pretty grotesque.
            totTrans: Integer := 0
            nTrans:   Integer := 1
            while nTrans ~= 0 repeat
                nTrans := 0
                for i in 1..#v-1 for j in 2..#v repeat
                    if v.i > v.j then
                        nTrans := nTrans + 1
                        e := v.i; v.i := v.j; v.j := e
                totTrans := totTrans + nTrans
            for i in 1..dim repeat
                if v.i ~= minix+i-1 then return 0
            odd? totTrans => -1
            1


        ---- Exported functions
        ravel x ==
            [get(x,i) for i in 0..#x-1]

        unravel l ==
            -- lengthRankOrElse #l gives sytnax error
            nz: NNI := # l
            lengthRankOrElse nz
            z := new(nz, 0)
            for i in 0..nz-1 for r in l repeat set_!(z, i, r)
            z

        kroneckerDelta() ==
            z := new(dim2, 0)
            for i in 1..dim for zi in 0.. by (dim+1) repeat set_!(z, zi, 1)
            z
        leviCivitaSymbol() ==
            nz := dim^dim
            z  := new(nz, 0)
            indv: INDEX := new(dim, 0)
            for i in 0..nz-1 repeat
                set_!(z, i, permsign_!(int2index(i, indv))::R)
            z

        -- from GradedModule
        degree x ==
            rank x

        rank x ==
            n := #x
            lengthRankOrElse n

        elt(x) ==
            #x ~= 1    => error "Index error (the rank is not 0)"
            get(x,0)
        elt(x, i: I) ==
            #x ~= dim  => error "Index error (the rank is not 1)"
            get(x,(i-minix))
        elt(x, i: I, j: I) ==
            #x ~= dim2 => error "Index error (the rank is not 2)"
            get(x,(dim*(i-minix) + (j-minix)))
        elt(x, i: I, j: I, k: I) ==
            #x ~= dim3 => error "Index error (the rank is not 3)"
            get(x,(dim2*(i-minix) + dim*(j-minix) + (k-minix)))
        elt(x, i: I, j: I, k: I, l: I) ==
            #x ~= dim4 => error "Index error (the rank is not 4)"
            get(x,(dim3*(i-minix) + dim2*(j-minix) + dim*(k-minix) + (l-minix)))

        elt(x, i: List I) ==
            #i ~= rank x => error "Index error (wrong rank)"
            n: I := 0
            for ii in i repeat
                ix := ii - minix
                ix<0 or ix>dim-1 => error "Index error (out of range)"
                n := dim*n + ix
            get(x,n)

        coerce(lr: List R): % ==
            #lr ~= dim => error "Incorrect number of components"
            z := new(dim, 0)
            for r in lr for i in 0..dim-1 repeat set_!(z, i, r)
            z
        coerce(lx: List %): % ==
            #lx ~= dim => error "Incorrect number of slices"
            rx := rank first lx
            for x in lx repeat
                rank x ~= rx => error "Inhomogeneous slice ranks"
            nx := # first lx
            z  := new(dim * nx, 0)
            for x in lx for offz in 0.. by nx repeat
                for i in 0..nx-1 repeat set_!(z, offz + i, get(x,i))
            z

        retractIfCan(x:%):Union(R,"failed") ==
            zero? rank(x) => x()
            "failed"
        Outf ==> OutputForm

        mkOutf(x:%, i0:I, rnk:NNI): Outf ==
            odd? rnk =>
                rnk1  := (rnk-1) pretend NNI
                nskip := dim^rnk1
                [mkOutf(x, i0+nskip*i, rnk1) for i in 0..dim-1]::Outf
            rnk = 0 =>
                get(x,i0)::Outf
            rnk1  := (rnk-2) pretend NNI
            nskip := dim^rnk1
            matrix [[mkOutf(x, i0+nskip*(dim*i + j), rnk1)
                             for j in 0..dim-1] for i in 0..dim-1]
        coerce(x): Outf ==
            mkOutf(x, 0, rank x)

        0 == 0$R::Rep
        1 == 1$R::Rep

        --coerce(n: I): % == new(1, n::R)
        coerce(r: R): % == new(1,r)

        coerce(v: DP(dim,R)): % ==
            z := new(dim, 0)
            for i in 0..dim-1 for j in minIndex v .. maxIndex v repeat
                set_!(z, i, v.j)
            z
        coerce(m: SM(dim,R)): % ==
            z := new(dim^2, 0)
            offz := 0
            for i in 0..dim-1 repeat
                for j in 0..dim-1 repeat
                    set_!(z, offz + j, m(i+1,j+1))
                offz := offz + dim
            z

        x = y ==
            #x ~= #y => false
            for i in 0..#x-1 repeat
               if get(x,i) ~= get(y,i) then return false
            true
        x + y ==
            #x ~= #y => error "Rank mismatch"
            -- z := [xi + yi for xi in x for yi in y]
            z := new(#x, 0)
            for i in 0..#x-1 repeat set_!(z, i, get(x,i) + get(y,i))
            z
        x - y ==
            #x ~= #y => error "Rank mismatch"
            -- [xi - yi for xi in x for yi in y]
            z := new(#x, 0)
            for i in 0..#x-1 repeat set_!(z, i, get(x,i) - get(y,i))
            z
        - x ==
            -- [-xi for xi in x]
            z := new(#x, 0)
            for i in 0..#x-1 repeat set_!(z, i, -get(x,i))
            z
        n * x ==
            -- [n * xi for xi in x]
            z := new(#x, 0)
            for i in 0..#x-1 repeat set_!(z, i, n * get(x,i))
            z
        x * n ==
            -- [n * xi for xi in x]
            z := new(#x, 0)
            for i in 0..#x-1 repeat set_!(z, i, n* get(x,i))  -- Commutative!!
            z
        r * x ==
            -- [r * xi for xi in x]
            z := new(#x, 0)
            for i in 0..#x-1 repeat set_!(z, i, r * get(x,i))
            z
        x * r ==
            -- [xi*r for xi in x]
            z := new(#x, 0)
            for i in 0..#x-1 repeat set_!(z, i, r* get(x,i))  -- Commutative!!
            z
        product(x, y) ==
            nx := #x; ny := #y
            z  := new(nx * ny, 0)
            for i in 0..nx-1 for ioff in 0.. by ny repeat
                for j in 0..ny-1 repeat
                    set_!(z, ioff + j, get(x,i) * get(y,j))
            z
        x * y ==
            rx := rank x
            ry := rank y
            rx = 0 => get(x,0) * y
            ry = 0 => x * get(y,0)
            contract(x, rx, y, 1)

        contract(x, i, j) ==
            rx := rank x
            i < 1 or i > rx or j < 1 or j > rx or i = j =>
                error "Improper index for contraction"
            if i > j then (i,j) := (j,i)

            rl:= (rx- j) pretend NNI; nl:= dim^rl; zol:= 1;     xol:= zol
            rm:= (j-i-1) pretend NNI; nm:= dim^rm; zom:= nl;    xom:= zom*dim
            rh:= (i - 1) pretend NNI; nh:= dim^rh; zoh:= nl*nm
            xoh:= zoh*dim^2
            xok := nl*(1 + nm*dim)
            z   := new(nl*nm*nh, 0)
            for h in 1..nh _
            for xh in 0.. by xoh for zh in 0.. by zoh repeat
                for m in 1..nm _
                for xm in xh.. by xom for zm in zh.. by zom repeat
                    for l in 1..nl _
                    for xl in xm.. by xol for zl in zm.. by zol repeat
                        set_!(z, zl, 0)
                        for k in 1..dim for xk in xl.. by xok repeat
                            set_!(z, zl, get(z,zl) + get(x,xk))
            z

        contract(x, i, y, j) ==
            rx := rank x
            ry := rank y

            i < 1 or i > rx or j < 1 or j > ry =>
                error "Improper index for contraction"

            rly:= (ry-j) pretend NNI;  nly:= dim^rly;  oly:= 1;    zoly:= 1
            rhy:= (j -1) pretend NNI; nhy:= dim^rhy
            ohy:= nly*dim; zohy:= zoly*nly
            rlx:= (rx-i) pretend NNI;  nlx:= dim^rlx
            olx:= 1;        zolx:= zohy*nhy
            rhx:= (i -1) pretend NNI;  nhx:= dim^rhx
            ohx:= nlx*dim;  zohx:= zolx*nlx

            z := new(nlx*nhx*nly*nhy, 0)

            for dxh in 1..nhx _
            for xh in 0.. by ohx for zhx in 0.. by zohx repeat
                for dxl in 1..nlx _
                for xl in xh.. by olx for zlx in zhx.. by zolx repeat
                    for dyh in 1..nhy _
                    for yh in 0.. by ohy for zhy in zlx.. by zohy repeat
                        for dyl in 1..nly _
                        for yl in yh.. by oly for zly in zhy.. by zoly repeat
                            set_!(z, zly, 0)
                            for k in 1..dim _
                            for xk in xl.. by nlx for yk in yl.. by nly repeat
                                set_!(z, zly, get(z,zly)+get(x,xk)*get(y,yk))
            z

        transpose x ==
            transpose(x, 1, rank x)
        transpose(x, i, j) ==
            rx := rank x
            i < 1 or i > rx or j < 1 or j > rx or i = j =>
                error "Improper indicies for transposition"
            if i > j then (i,j) := (j,i)

            rl:= (rx- j) pretend NNI; nl:= dim^rl; zol:= 1;      zoi := zol*nl
            rm:= (j-i-1) pretend NNI; nm:= dim^rm; zom:= nl*dim; zoj := zom*nm
            rh:= (i - 1) pretend NNI; nh:= dim^rh; zoh:= nl*nm*dim^2
            z   := new(#x, 0)
            for h in 1..nh for zh in 0..  by zoh repeat _
            for m in 1..nm for zm in zh.. by zom repeat _
            for l in 1..nl for zl in zm.. by zol repeat _
                for p in 1..dim _
                for zp in zl.. by zoi for xp in zl.. by zoj repeat
                    for q in 1..dim _
                    for zq in zp.. by zoj for xq in xp.. by zoi repeat
                        set_!(z, zq, get(x,xq))
            z

        reindex(x, l) ==
            nx := #x
            z: % := new(nx, 0)

            rx := rank x
            p  := mkPerm(rx, l)
            xiv: INDEX := new(rx, 0)
            ziv: INDEX := new(rx, 0)

            -- Use permutation
            for i in 0..#x-1 repeat
                pi := index2int(permute_!(ziv, int2index(i,xiv),p))
                set_!(z, pi, get(x,i))
            z
\end{spad}

BiCartesianTensor(dim,R) provides Cartesian tensors with components belonging to a commutative ring R. These tensors can have any number of covariant and contravariant indices. Each index takes values from -dim..1 or 1..dim.

fricas
(1) -> <spad>
fricas
)abbrev domain BITENS BiCartesianTensor
BiCartesianTensor(dim, R): Exports == Implementation where
    NNI ==> NonNegativeInteger
    I   ==> PositiveInteger
    DP  ==> DirectProduct
    SM  ==> SquareMatrix
dim: NNI R: CommutativeRing
Exports ==> Join(GradedAlgebra(R, DP(2,NNI)), GradedModule(Integer, DP(2,NNI))) with
coerce: DP(dim, R) -> % ++ coerce(v) views a vector over the ring R as a (0,1)-tensor. coerce: SM(dim, R) -> % ++ coerce(m) views a matrix on the ring R as a (2,0)-tensor.
coerce: List R -> % ++ coerce([r_1,...,r_dim]) views a list of ring R elements ++ as a (1,0)-tensor
coerce: List % -> % ++ coerce([t_1,...,t_dim]) allows tensors to be constructed ++ using lists.
rank: % -> DP(2,NNI) ++ rank(t) returns the tensorial rank of t (that is, the ++ number of indices). This is the same as the graded module ++ degree.
elt: (%) -> R ++ elt(t) gives the component of a rank 0 tensor. elt: (%, List List I) -> R ++ elt(t,[[i1,...,in],[ji,...,jm]]) gives a component of a (n,m)-tensor.
-- This specializes the documentation from GradedAlgebra. product: (%,%) -> % ++ product(s,t) is the outer product of the tensors s and t. ++ For example, if \spad{r = product(s,t)} for rank 2 tensors s and t, ++ then \spad{r} is a rank 4 tensor given by ++ \spad{r(i,j,k,l) = s(i,j)*t(k,l)}.
"*": (%, %) -> % ++ s*t is the inner product of the tensors s and t which contracts ++ the last index of s with the first index of t, i.e. ++ \spad{t*s = contract(t,rank t, s, 1)} ++ \spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])} ++ This is compatible with the use of \spad{M*v} to denote ++ the matrix-vector inner product.
contract: (%, Integer, %, Integer) -> % ++ contract(t,i,s,j) is the inner product of tenors s and t ++ which sums along the \spad{k1}-th index of ++ t and the \spad{k2}-th index of s. ++ For example, if \spad{r = contract(s,2,t,1)} for rank 3 tensors ++ rank 3 tensors \spad{s} and \spad{t}, then \spad{r} is ++ the rank 4 \spad{(= 3 + 3 - 2)} tensor given by ++ \spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.
contract: (%, Integer, Integer) -> % ++ contract(t,i,j) is the contraction of tensor t which ++ sums along the \spad{i}-th and \spad{j}-th indices. ++ For example, if ++ \spad{r = contract(t,1,3)} for a rank 4 tensor t, then ++ \spad{r} is the rank 2 \spad{(= 4 - 2)} tensor given by ++ \spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.
transpose: % -> % ++ transpose(t) exchanges the first and last indices of t. ++ For example, if \spad{r = transpose(t)} for a rank 4 tensor t, then ++ \spad{r} is the rank 4 tensor given by ++ \spad{r(i,j,k,l) = t(l,j,k,i)}.
transpose: (%, Integer, Integer) -> % ++ transpose(t,i,j) exchanges the \spad{i}-th and \spad{j}-th indices of t. ++ For example, if \spad{r = transpose(t,2,3)} for a rank 4 tensor t, then ++ \spad{r} is the rank 4 tensor given by ++ \spad{r(i,j,k,l) = t(i,k,j,l)}.
reindex: (%, List Integer) -> % ++ reindex(t,[i1,...,idim]) permutes the indices of t. ++ For example, if \spad{r = reindex(t, [4,1,2,3])} ++ for a rank 4 tensor t, ++ then \spad{r} is the rank for tensor given by ++ \spad{r(i,j,k,l) = t(l,i,j,k)}.
kroneckerDelta: () -> % ++ kroneckerDelta() is the (1,1)-tensor defined by ++ \spad{kroneckerDelta()(i,j)} ++ \spad{= 1 if i = j} ++ \spad{= 0 if i \~= j}
leviCivitaSymbol: () -> % ++ leviCivitaSymbol() is the (\spad{dim},0)-tensor defined by ++ \spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} ++ if \spad{i1,...,idim} is an even/is nota /is an odd permutation ++ of \spad{minix,...,minix+dim-1}. ravel: % -> List R ++ ravel(t) produces a list of (n+m)*dim components from a ++ (n,m)-tensor such that \spad{unravel(ravel(t)) = t}.
unravel: List R -> % ++ unravel(t) produces a (#t/dim,0)-tensor from a list of ++ components such that ++ \spad{unravel(ravel(t)) = t}.
sample: () -> % ++ sample() returns an object of type %.
Implementation ==> add
PERM ==> List Vector I -- permutation of 1..n and 1..m INDEX ==> List Vector I -- vector of n indices and m indices in 1..dim
Rep := IndexedVector(R,0) get ==> elt$Rep set_! ==> setelt$Rep
-- Use row-major order: -- x[[h],[i,j]] <-> x[(h-1)*dim^2+(i-1)*dim+(j-1)]
n: Integer r,s: R x,y,z: %
---- Local stuff dim2: NNI := dim^2 dim3: NNI := dim^3 dim4: NNI := dim^4
sample()==kroneckerDelta()$% int2index(n: Integer, indv: INDEX): INDEX == n < 0 => error "Index error (too small)" rnk := #(indv.1) for i in 1..rnk repeat qr := divide(n, dim) n := qr.quotient indv.1.((rnk-i+1) pretend I) := qr.remainder + 1 rnk := #(indv.2) for i in 1..rnk repeat qr := divide(n, dim) n := qr.quotient indv.2.((rnk-i+1) pretend I) := qr.remainder + 1 n ~= 0 => error "Index error (too big)" indv
index2int(indv: INDEX): Integer == n: I := 0 for i in 1..#(indv.1) repeat ix := indv.1.i - 1 ix<0 or ix>dim-1 => error "Index error (out of range)" n := dim*n + ix for i in 1..#(indv.2) repeat ix := indv.2.i - 1 ix<0 or ix>dim-1 => error "Index error (out of range)" n := dim*n + ix n
lengthRankOrElse(v: Integer): NNI == v = 1 => 0 v = dim => 1 v = dim2 => 2 v = dim3 => 3 v = dim4 => 4 rx := 0 while v ~= 0 repeat qr := divide(v, dim) v := qr.quotient if v ~= 0 then qr.remainder ~= 0 => error "Rank is not a whole number" rx := rx + 1 rx
-- l must be a list of the numbers 1..#l mkPerm(n: NNI, l: List Integer): PERM == #l ~= n => error "The list is not a permutation." p: PERM := new(n, 0) seen: Vector Boolean := new(n, false) for i in 1..n for e in l repeat e < 1 or e > n => error "The list is not a permutation." p.i := e seen.e := true for e in 1..n repeat not seen.e => error "The list is not a permutation." p
-- permute s according to p into result t. permute_!(t: INDEX, s: INDEX, p: PERM): INDEX == for i in 1..#p repeat t.i := s.(p.i) t
-- permsign!(v) = 1, 0, or -1 according as -- v is an even, is not, or is an odd permutation of minix..minix+#v-1. permsign_!(v: INDEX): Integer == -- sum minix..minix+#v-1. maxix := minix+#v-1 psum := (((maxix+1)*maxix - minix*(minix-1)) exquo 2)::Integer -- +/v ~= psum => 0 n := 0 for i in 1..#v repeat n := n + v.i n ~= psum => 0 -- Bubble sort! This is pretty grotesque. totTrans: Integer := 0 nTrans: Integer := 1 while nTrans ~= 0 repeat nTrans := 0 for i in 1..#v-1 for j in 2..#v repeat if v.i > v.j then nTrans := nTrans + 1 e := v.i; v.i := v.j; v.j := e totTrans := totTrans + nTrans for i in 1..dim repeat if v.i ~= minix+i-1 then return 0 odd? totTrans => -1 1
---- Exported functions ravel x == [get(x,i) for i in 0..#x-1]
unravel l == -- lengthRankOrElse #l gives sytnax error nz: NNI := # l lengthRankOrElse nz z := new(nz, 0) for i in 0..nz-1 for r in l repeat set_!(z, i, r) z
kroneckerDelta() == z := new(dim2, 0) for i in 1..dim for zi in 0.. by (dim+1) repeat set_!(z, zi, 1) z leviCivitaSymbol() == nz := dim^dim z := new(nz, 0) indv: INDEX := new(dim, 0) for i in 0..nz-1 repeat set_!(z, i, permsign_!(int2index(i, indv))::R) z
-- from GradedModule degree x == rank x
rank x == n := #x lengthRankOrElse n
elt(x) == #x ~= 1 => error "Index error (the rank is not 0)" get(x,0) elt(x, i: I) == #x ~= dim => error "Index error (the rank is not 1)" get(x,(i-minix)) elt(x, i: I, j: I) == #x ~= dim2 => error "Index error (the rank is not 2)" get(x,(dim*(i-minix) + (j-minix))) elt(x, i: I, j: I, k: I) == #x ~= dim3 => error "Index error (the rank is not 3)" get(x,(dim2*(i-minix) + dim*(j-minix) + (k-minix))) elt(x, i: I, j: I, k: I, l: I) == #x ~= dim4 => error "Index error (the rank is not 4)" get(x,(dim3*(i-minix) + dim2*(j-minix) + dim*(k-minix) + (l-minix)))
elt(x, i: List I) == #i ~= rank x => error "Index error (wrong rank)" n: I := 0 for ii in i repeat ix := ii - minix ix<0 or ix>dim-1 => error "Index error (out of range)" n := dim*n + ix get(x,n)
coerce(lr: List R): % == #lr ~= dim => error "Incorrect number of components" z := new(dim, 0) for r in lr for i in 0..dim-1 repeat set_!(z, i, r) z coerce(lx: List %): % == #lx ~= dim => error "Incorrect number of slices" rx := rank first lx for x in lx repeat rank x ~= rx => error "Inhomogeneous slice ranks" nx := # first lx z := new(dim * nx, 0) for x in lx for offz in 0.. by nx repeat for i in 0..nx-1 repeat set_!(z, offz + i, get(x,i)) z
retractIfCan(x:%):Union(R,"failed") == zero? rank(x) => x() "failed" Outf ==> OutputForm
mkOutf(x:%, i0:I, rnk:NNI): Outf == odd? rnk => rnk1 := (rnk-1) pretend NNI nskip := dim^rnk1 [mkOutf(x, i0+nskip*i, rnk1) for i in 0..dim-1]::Outf rnk = 0 => get(x,i0)::Outf rnk1 := (rnk-2) pretend NNI nskip := dim^rnk1 matrix [[mkOutf(x, i0+nskip*(dim*i + j), rnk1) for j in 0..dim-1] for i in 0..dim-1] coerce(x): Outf == mkOutf(x, 0, rank x)
0 == 0$R::Rep 1 == 1$R::Rep
--coerce(n: I): % == new(1, n::R) coerce(r: R): % == new(1,r)
coerce(v: DP(dim,R)): % == z := new(dim, 0) for i in 0..dim-1 for j in minIndex v .. maxIndex v repeat set_!(z, i, v.j) z coerce(m: SM(dim,R)): % == z := new(dim^2, 0) offz := 0 for i in 0..dim-1 repeat for j in 0..dim-1 repeat set_!(z, offz + j, m(i+1,j+1)) offz := offz + dim z
x = y == #x ~= #y => false for i in 0..#x-1 repeat if get(x,i) ~= get(y,i) then return false true x + y == #x ~= #y => error "Rank mismatch" -- z := [xi + yi for xi in x for yi in y] z := new(#x, 0) for i in 0..#x-1 repeat set_!(z, i, get(x,i) + get(y,i)) z x - y == #x ~= #y => error "Rank mismatch" -- [xi - yi for xi in x for yi in y] z := new(#x, 0) for i in 0..#x-1 repeat set_!(z, i, get(x,i) - get(y,i)) z - x == -- [-xi for xi in x] z := new(#x, 0) for i in 0..#x-1 repeat set_!(z, i, -get(x,i)) z n * x == -- [n * xi for xi in x] z := new(#x, 0) for i in 0..#x-1 repeat set_!(z, i, n * get(x,i)) z x * n == -- [n * xi for xi in x] z := new(#x, 0) for i in 0..#x-1 repeat set_!(z, i, n* get(x,i)) -- Commutative!! z r * x == -- [r * xi for xi in x] z := new(#x, 0) for i in 0..#x-1 repeat set_!(z, i, r * get(x,i)) z x * r == -- [xi*r for xi in x] z := new(#x, 0) for i in 0..#x-1 repeat set_!(z, i, r* get(x,i)) -- Commutative!! z product(x, y) == nx := #x; ny := #y z := new(nx * ny, 0) for i in 0..nx-1 for ioff in 0.. by ny repeat for j in 0..ny-1 repeat set_!(z, ioff + j, get(x,i) * get(y,j)) z x * y == rx := rank x ry := rank y rx = 0 => get(x,0) * y ry = 0 => x * get(y,0) contract(x, rx, y, 1)
contract(x, i, j) == rx := rank x i < 1 or i > rx or j < 1 or j > rx or i = j => error "Improper index for contraction" if i > j then (i,j) := (j,i)
rl:= (rx- j) pretend NNI; nl:= dim^rl; zol:= 1; xol:= zol rm:= (j-i-1) pretend NNI; nm:= dim^rm; zom:= nl; xom:= zom*dim rh:= (i - 1) pretend NNI; nh:= dim^rh; zoh:= nl*nm xoh:= zoh*dim^2 xok := nl*(1 + nm*dim) z := new(nl*nm*nh, 0) for h in 1..nh _ for xh in 0.. by xoh for zh in 0.. by zoh repeat for m in 1..nm _ for xm in xh.. by xom for zm in zh.. by zom repeat for l in 1..nl _ for xl in xm.. by xol for zl in zm.. by zol repeat set_!(z, zl, 0) for k in 1..dim for xk in xl.. by xok repeat set_!(z, zl, get(z,zl) + get(x,xk)) z
contract(x, i, y, j) == rx := rank x ry := rank y
i < 1 or i > rx or j < 1 or j > ry => error "Improper index for contraction"
rly:= (ry-j) pretend NNI; nly:= dim^rly; oly:= 1; zoly:= 1 rhy:= (j -1) pretend NNI; nhy:= dim^rhy ohy:= nly*dim; zohy:= zoly*nly rlx:= (rx-i) pretend NNI; nlx:= dim^rlx olx:= 1; zolx:= zohy*nhy rhx:= (i -1) pretend NNI; nhx:= dim^rhx ohx:= nlx*dim; zohx:= zolx*nlx
z := new(nlx*nhx*nly*nhy, 0)
for dxh in 1..nhx _ for xh in 0.. by ohx for zhx in 0.. by zohx repeat for dxl in 1..nlx _ for xl in xh.. by olx for zlx in zhx.. by zolx repeat for dyh in 1..nhy _ for yh in 0.. by ohy for zhy in zlx.. by zohy repeat for dyl in 1..nly _ for yl in yh.. by oly for zly in zhy.. by zoly repeat set_!(z, zly, 0) for k in 1..dim _ for xk in xl.. by nlx for yk in yl.. by nly repeat set_!(z, zly, get(z,zly)+get(x,xk)*get(y,yk)) z
transpose x == transpose(x, 1, rank x) transpose(x, i, j) == rx := rank x i < 1 or i > rx or j < 1 or j > rx or i = j => error "Improper indicies for transposition" if i > j then (i,j) := (j,i)
rl:= (rx- j) pretend NNI; nl:= dim^rl; zol:= 1; zoi := zol*nl rm:= (j-i-1) pretend NNI; nm:= dim^rm; zom:= nl*dim; zoj := zom*nm rh:= (i - 1) pretend NNI; nh:= dim^rh; zoh:= nl*nm*dim^2 z := new(#x, 0) for h in 1..nh for zh in 0.. by zoh repeat _ for m in 1..nm for zm in zh.. by zom repeat _ for l in 1..nl for zl in zm.. by zol repeat _ for p in 1..dim _ for zp in zl.. by zoi for xp in zl.. by zoj repeat for q in 1..dim _ for zq in zp.. by zoj for xq in xp.. by zoi repeat set_!(z, zq, get(x,xq)) z
reindex(x, l) == nx := #x z: % := new(nx, 0)
rx := rank x p := mkPerm(rx, l) xiv: INDEX := new(rx, 0) ziv: INDEX := new(rx, 0)
-- Use permutation for i in 0..#x-1 repeat pi := index2int(permute_!(ziv, int2index(i,xiv),p)) set_!(z, pi, get(x,i)) z</spad>
fricas
Compiling FriCAS source code from file 
      /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/7319274953584694234-25px001.spad
      using old system compiler.
   BITENS abbreviates domain BiCartesianTensor 
------------------------------------------------------------------------
   initializing NRLIB BITENS for BiCartesianTensor 
   compiling into NRLIB BITENS 
   processing macro definition PERM ==> List Vector PositiveInteger 
   processing macro definition INDEX ==> List Vector PositiveInteger 
   processing macro definition get ==> Sel(Rep,elt) 
   processing macro definition set_! ==> Sel(Rep,setelt) 
   compiling exported sample : () -> %
Time: 0.03 SEC.
compiling local int2index : (Integer,List Vector PositiveInteger) -> List Vector PositiveInteger ****** comp fails at level 9 with expression: ****** error in function int2index
(IF (< |n| 0) (|error| "Index error (too small)") (SEQ (|:=| |rnk| (|#| (|indv| 1))) (REPEAT (IN |i| (SEGMENT 1 |rnk|)) (SEQ (|:=| |qr| (|divide| |n| |dim|)) (|:=| |n| (|qr| |quotient|)) (|exit| 1 (|:=| ((|indv| 1) (|pretend| (+ (- |rnk| |i|) 1) (|PositiveInteger|))) (+ (|qr| |remainder|) 1))))) (|:=| |rnk| (|#| (|indv| 2))) (REPEAT (IN |i| (SEGMENT 1 |rnk|)) (SEQ (|:=| |qr| (|divide| |n| |dim|)) (|:=| |n| (|qr| |quotient|)) (|exit| 1 (|:=| ((|indv| 2) (|pretend| (+ (- |rnk| |i|) 1) (|PositiveInteger|))) (+ (|qr| |remainder|) 1))))) (|:=| (|:| #1=#:G0 (|Boolean|)) (~= |n| 0)) (|exit| 1 (IF #1# (|error| "Index error (too big)") |indv|)))) ****** level 9 ****** $x:= (elt indv (One)) $m:= (Record (: quotient (Integer)) (: remainder (Integer))) $f:= ((((|n| # # #) (|qr| #) (|i| # #) (|rnk| #) ...)))
>> Apparent user error: Cannot coerce indv of mode (List (Vector (PositiveInteger))) to mode (IndexedVector R (Zero))