axiom
Dx: LODO(EXPR INT, f+->D(f,x)) := D()
Type: LinearOrdinaryDifferentialOperator
?(Expression Integer,theMap LAMBDA-CLOSURE(NIL,NIL,NIL,G1421 envArg,SPADCALL(G1421,QUOTE x,ELT(*1;anonymousFunction;0;initial;internal;MV,0))))
axiom
u := operator 'u
axiom
L := Dx + u(x)
Type: LinearOrdinaryDifferentialOperator
?(Expression Integer,theMap LAMBDA-CLOSURE(NIL,NIL,NIL,G1421 envArg,SPADCALL(G1421,QUOTE x,ELT(*1;anonymousFunction;0;initial;internal;MV,0))))
axiom
L**2 = L*L
Type: Equation LinearOrdinaryDifferentialOperator
?(Expression Integer,theMap LAMBDA-CLOSURE(NIL,NIL,NIL,G1421 envArg,SPADCALL(G1421,QUOTE x,ELT(*1;anonymousFunction;0;initial;internal;MV,0))))
or
axiom
f: INT->INT:=x+->x+1
Type: (Integer -> Integer)
axiom
K := OREUP ( x, INT, 1, f)
Type: Domain
axiom
L:K :=x+1
You cannot declare L to be of type UnivariateSkewPolynomial(x,
Integer,R -> R,theMap LAMBDA-CLOSURE(NIL,NIL,NIL,G1432 envArg,
SPADCALL(G1432,1,ELT(*1;anonymousFunction;1;initial;internal;MV,0
)))) because either the declared type of L or the type of the
value of L is different from UnivariateSkewPolynomial(x,Integer,
R -> R,theMap LAMBDA-CLOSURE(NIL,NIL,NIL,G1432 envArg,SPADCALL(
G1432,1,ELT(*1;anonymousFunction;1;initial;internal;MV,0)))) .
L^2=L*L
Type: Equation LinearOrdinaryDifferentialOperator
?(Expression Integer,theMap LAMBDA-CLOSURE(NIL,NIL,NIL,G1421 envArg,SPADCALL(G1421,QUOTE x,ELT(*1;anonymousFunction;0;initial;internal;MV,0))))
Reason is, that exponentiation is not taken from Monoid, but from SUP.
Martin