login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for #418 series expansion, but not differentiable revision 2 of 4

1 2 3 4
Editor: kratt6
Time: 2008/02/01 01:52:10 GMT-8
Note:

added:


Submitted by : kratt6 at: 2008-02-01T01:50:46-08:00 (16 years ago)
Name :
Axiom Version :
Category : Severity : Status :
Optional subject :  
Optional comment :

Consider

axiom
ex := ((-((-z*z)+1)**(1/2))+1)**(1/2)

\label{eq1}\sqrt{-{\sqrt{-{z^2}+ 1}}+ 1}(1)
Type: Expression(Integer)

which is certainly continuous, but not differentiable at zero. Still, axiom gives

axiom
m:=z::UTS(AN, z, 0)

\label{eq2}z(2)
Type: UnivariateTaylorSeries?(AlgebraicNumber?,z,0)
axiom
((-((-m*m)+1)**(1/2))+1)**(1/2)

\label{eq3}\begin{array}{@{}l}
\displaystyle
{{1 \over{\sqrt{2}}}\  z}+{{1 \over{8 \ {\sqrt{2}}}}\ {z^3}}+{{7 \over{{128}\ {\sqrt{2}}}}\ {z^5}}+{{{33}\over{{1024}\ {\sqrt{2}}}}\ {z^7}}+ 
\
\
\displaystyle
{{{715}\over{{32768}\ {\sqrt{2}}}}\ {z^9}}+{O \left({z^{11}}\right)}
(3)
Type: UnivariateTaylorSeries?(AlgebraicNumber?,z,0)

which is correct for positive values, but not for negative values of z. Of course, there are simpler functions that are developed like that, abs for example.

I'm not sure what's the correct way to deal with this. MuPAD? is very careful here:

    >> ex := ((-((-z*z)+1)^(1/2))+1)^(1/2)
    ex := ((-((-z*z)+1)^(1/2))+1)^(1/2)

                                          2 1/2 1/2
                               (1 - (1 - z )   )
    >> series(ex, z=0, 5)
    series(ex, z=0, 5)

                       /  2 \1/2        /  2 \1/2         /  2 \1/2
                     2 | z  |         4 | z  |          6 | z  |
        /  2 \1/2   z  | -- |      7 z  | -- |      33 z  | -- |
        | z  |         \  2 /           \  2 /            \  2 /         8
        | -- |    + ------------ + -------------- + --------------- + O(z )
        \  2 /            8              128              1024
    >> series(abs(z), z=0, 5)
    series(abs(z), z=0, 5)

                                     z         6
                                  ------- + O(z )
                                  sign(z)