map confuses sets.
fricas
(1) -> A:Set Integer:=set [-2,-1,0]
Type: Set(Integer)
fricas
B:Set Integer:=set [0,1,4]
Type: Set(Integer)
fricas
C:=map(x +-> x^2,A)
Type: Set(Integer)
fricas
test(C=B)
Type: Boolean
somehow a sort is missing after applying map.
Proposed Fix
If S has OrderedSet
then map_!
should include 'sort':
map_!(f,s) ==
map_!(f,s)$Rep
sort_!(s)$Rep
removeDuplicates_!
See diff
See also: SandBoxSetAny for a more ambitious fix that defines an
ordering for all Sets.
spad
)abbrev domain SET Set
++ Author: Michael Monagan; revised by Richard Jenks
++ Date Created: August 87 through August 88
++ Date Last Updated: May 1991
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A set over a domain D models the usual mathematical notion of a finite set
++ of elements from D.
++ Sets are unordered collections of distinct elements
++ (that is, order and duplication does not matter).
++ The notation \spad{set [a,b,c]} can be used to create
++ a set and the usual operations such as union and intersection are available
++ to form new sets.
++ In our implementation, \Language{} maintains the entries in
++ sorted order. Specifically, the parts function returns the entries
++ as a list in ascending order and
++ the extract operation returns the maximum entry.
++ Given two sets s and t where \spad{#s = m} and \spad{#t = n},
++ the complexity of
++ \spad{s = t} is \spad{O(min(n,m))}
++ \spad{s < t} is \spad{O(max(n,m))}
++ \spad{union(s,t)}, \spad{intersect(s,t)}, \spad{minus(s,t)}, \spad{symmetricDifference(s,t)} is \spad{O(max(n,m))}
++ \spad{member(x,t)} is \spad{O(n log n)}
++ \spad{insert(x,t)} and \spad{remove(x,t)} is \spad{O(n)}
Set(S:SetCategory): FiniteSetAggregate S == add
Rep := FlexibleArray(S)
# s == _#$Rep s
brace() == empty()
set() == empty()
empty() == empty()$Rep
copy s == copy(s)$Rep
parts s == parts(s)$Rep
inspect s == (empty? s => error "Empty set"; s(maxIndex s))
extract_! s ==
x := inspect s
delete_!(s, maxIndex s)
x
find(f, s) == find(f, s)$Rep
map(f, s) == map_!(f,copy s)
reduce(f, s) == reduce(f, s)$Rep
reduce(f, s, x) == reduce(f, s, x)$Rep
reduce(f, s, x, y) == reduce(f, s, x, y)$Rep
if S has ConvertibleTo InputForm then
convert(x:%):InputForm ==
convert [convert("set"::Symbol)@InputForm,
convert(parts x)@InputForm]
if S has OrderedSet then
s = t == s =$Rep t
max s == inspect s
min s == (empty? s => error "Empty set"; s(minIndex s))
map_!(f,s) ==
map_!(f,s)$Rep
sort_!(s)$Rep
removeDuplicates_! s
construct l ==
zero?(n := #l) => empty()
a := new(n, first l)
for i in minIndex(a).. for x in l repeat a.i := x
removeDuplicates_! sort_! a
insert_!(x, s) ==
n := inc maxIndex s
k := minIndex s
while k < n and x > s.k repeat k := inc k
k < n and s.k = x => s
insert_!(x, s, k)
member?(x, s) == -- binary search
empty? s => false
t := maxIndex s
b := minIndex s
while b < t repeat
m := (b+t) quo 2
if x > s.m then b := m+1 else t := m
x = s.t
remove_!(x:S, s:%) ==
n := inc maxIndex s
k := minIndex s
while k < n and x > s.k repeat k := inc k
k < n and x = s.k => delete_!(s, k)
s
-- the set operations are implemented as variations of merging
intersect(s, t) ==
m := maxIndex s
n := maxIndex t
i := minIndex s
j := minIndex t
r := empty()
while i <= m and j <= n repeat
s.i = t.j => (concat_!(r, s.i); i := i+1; j := j+1)
if s.i < t.j then i := i+1 else j := j+1
r
difference(s:%, t:%) ==
m := maxIndex s
n := maxIndex t
i := minIndex s
j := minIndex t
r := empty()
while i <= m and j <= n repeat
s.i = t.j => (i := i+1; j := j+1)
s.i < t.j => (concat_!(r, s.i); i := i+1)
j := j+1
while i <= m repeat (concat_!(r, s.i); i := i+1)
r
symmetricDifference(s, t) ==
m := maxIndex s
n := maxIndex t
i := minIndex s
j := minIndex t
r := empty()
while i <= m and j <= n repeat
s.i < t.j => (concat_!(r, s.i); i := i+1)
s.i > t.j => (concat_!(r, t.j); j := j+1)
i := i+1; j := j+1
while i <= m repeat (concat_!(r, s.i); i := i+1)
while j <= n repeat (concat_!(r, t.j); j := j+1)
r
subset?(s, t) ==
m := maxIndex s
n := maxIndex t
m > n => false
i := minIndex s
j := minIndex t
while i <= m and j <= n repeat
s.i = t.j => (i := i+1; j := j+1)
s.i > t.j => j := j+1
return false
i > m
union(s:%, t:%) ==
m := maxIndex s
n := maxIndex t
i := minIndex s
j := minIndex t
r := empty()
while i <= m and j <= n repeat
s.i = t.j => (concat_!(r, s.i); i := i+1; j := j+1)
s.i < t.j => (concat_!(r, s.i); i := i+1)
(concat_!(r, t.j); j := j+1)
while i <= m repeat (concat_!(r, s.i); i := i+1)
while j <= n repeat (concat_!(r, t.j); j := j+1)
r
else
map_!(f,s) ==
map_!(f,s)$Rep
removeDuplicates_! s
insert_!(x, s) ==
for k in minIndex s .. maxIndex s repeat
s.k = x => return s
insert_!(x, s, inc maxIndex s)
remove_!(x:S, s:%) ==
n := inc maxIndex s
k := minIndex s
while k < n repeat
x = s.k => return delete_!(s, k)
k := inc k
s
spad
Compiling FriCAS source code from file
/var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/7072998645375249993-25px002.spad
using old system compiler.
SET abbreviates domain Set
------------------------------------------------------------------------
initializing NRLIB SET for Set
compiling into NRLIB SET
compiling exported # : % -> NonNegativeInteger
;;; *** |SET;#;%Nni;1| REDEFINED
Time: 0 SEC.
************* USER ERROR **********
available signatures for brace:
NONE
NEED brace: () -> ?
****** comp fails at level 1 with expression: ******
((DEF (|brace|) (NIL) (|empty|)))
****** level 1 ******
$x:= (DEF (brace) (NIL) (empty))
$m:= $EmptyMode
$f:=
((((|#| #) (< #) (<= #) (= #) ...)))
>> Apparent user error:
unspecified error
Retest
fricas
A2:Set Integer:=set [-2,-1,0]
Type: Set(Integer)
fricas
B2:Set Integer:=set [0,1,4]
Type: Set(Integer)
fricas
C2:=map(x +-> x^2,A)
Type: Set(Integer)
fricas
test(B2=C2)
Type: Boolean
But unfortunately the documentation lies:
++ In our implementation, \Language{} maintains the entries in
++ sorted order. Specifically, the parts function returns the
++ entries as a list in ascending order and the extract operation
++ returns the maximum entry.
This example shows that Set is not maintained in sorterd order.
So the code for Set still appears to be broken if the Set is
constructed over a domain that is not an OrderedSet.
fricas
)set message any off
showTypeInOutput true;
Type: String
fricas
Set Any has OrderedSet
Type: Boolean
fricas
B3:Set Any:=B;B3
Type: Set(Any)
fricas
C3:Set Any:=C;C3
Type: Set(Any)
fricas
test(B3=C3)
Type: Boolean
But why does this example work? Is set equality implemented as
an order n^2 comparison if the domain is not an OrderedSet?
In FiniteSetAggregate
? we see:
s = t == #s = #t and empty? difference(s,t)
...
difference(s:%, t:%) ==
m := copy s
for x in parts t repeat remove_!(x, m)
m
Status: open => fix proposed