|
|
last edited 9 years ago by test1 |
1 2 3 4 | ||
Editor: test1
Time: 2014/04/15 17:55:49 GMT+0 |
||
Note: |
changed: - \begin{axiom} integrate((1 + tan(x))^(1/3), x) \end{axiom}
This integral is elementary, but AXIOM returns the input as a formal integral. I thought this indicated a non-elementary result...
integrate((1 + tan(x))^(1/3),x)
(1) |
?) ] #1 RootSum?[2 - 2 #1 + #1 & , ----------------------------- & ]? 3 -1 + #1 Out[1]?= ------------------------------------------------------------- 2
In[2]:= ?RootSum? RootSum?[f, form]? represents the sum of form[x]? for all x that satisfy the polynomial equation f[x]? == 0. " title=" In[1]:= Integrate[(1 + Tan[x]?)^(1/3),x]
1/3 3 6 Log[-#1 + (1 + Tan[x]?) ] #1 RootSum?[2 - 2 #1 + #1 & , ----------------------------- & ]? 3 -1 + #1 Out[1]?= ------------------------------------------------------------- 2
In[2]:= ?RootSum? RootSum?[f, form]? represents the sum of form[x]? for all x that satisfy the polynomial equation f[x]? == 0. " class="equation" src="images/585158006443671166-16.0px.png" align="bottom" Style="vertical-align:text-bottom" width="793" height="1123"/>
Is the function "n-th root of some univariate polynomial" elementary?
Martin
Name:#346 Returns format integration sign for (1 + tan(x))^(1/3), which is elementary
=> #346 Returns formal integration sign for (1 + tan(x))^(1/3), which is elementary