login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for #346 Returns formal integration sign for (1 + tan(x))^(1/3), which is elementary revision 2 of 4

1 2 3 4
Editor: test1
Time: 2014/04/15 17:55:49 GMT+0
Note:

changed:
-
\begin{axiom}
integrate((1 + tan(x))^(1/3), x)
\end{axiom}

Submitted by : (unknown) at: 2007-11-17T22:30:42-08:00 (17 years ago)
Name :
Axiom Version :
Category : Severity : Status :
Optional subject :  
Optional comment :

This integral is elementary, but AXIOM returns the input as a formal integral. I thought this indicated a non-elementary result...

fricas
integrate((1 + tan(x))^(1/3), x)

\label{eq1}{\left(
\begin{array}{@{}l}
\displaystyle
{
\begin{array}{@{}l}
\displaystyle
8 \ {\root{6}\of{2}}\ {\sin \left({{2 \ {\arctan \left({1 \over{{\sqrt{2}}- 1}}\right)}}\over 3}\right)}\  \cdot 
\
\
\displaystyle
{\arctan{\left({{{\root{6}\of{2}}\ {\cos \left({{2 \ {\arctan \left({1 \over{{\sqrt{2}}- 1}}\right)}}\over 3}\right)}}\over{{\sqrt{{{\root{3}\of{{{\sin \left({x}\right)}+{\cos \left({x}\right)}}\over{\cos \left({x}\right)}}}^{2}}+{2 \ {\root{6}\of{2}}\ {\sin \left({{2 \ {\arctan \left({1 \over{{\sqrt{2}}- 1}}\right)}}\over 3}\right)}\ {\root{3}\of{{{\sin \left({x}\right)}+{\cos \left({x}\right)}}\over{\cos \left({x}\right)}}}}+{{\root{6}\of{2}}^{2}}}}+{\root{3}\of{{{\sin \left({x}\right)}+{\cos \left({x}\right)}}\over{\cos \left({x}\right)}}}+{{\root{6}\of{2}}\ {\sin \left({{2 \ {\arctan \left({1 \over{{\sqrt{2}}- 1}}\right)}}\over 3}\right)}}}}\right)}}
(1)
Type: Union(Expression(Integer),...)

Is it really elementary? --kratt6, Thu, 05 Apr 2007 15:04:01 -0500 reply
I'm not so sure whether this integral really is elementary. Mathematica gives


In[1]:= Integrate[(1 + Tan[x])^(1/3),x]<p>                                                          1/3
                        3     6     Log[-#1 + (1 + Tan[x]<a class=?) ] #1 RootSum?[2 - 2 #1 + #1 & , ----------------------------- & ]? 3 -1 + #1 Out[1]?= ------------------------------------------------------------- 2

In[2]:= ?RootSum? RootSum?[f, form]? represents the sum of form[x]? for all x that satisfy the polynomial equation f[x]? == 0. " title=" In[1]:= Integrate[(1 + Tan[x]?)^(1/3),x]

1/3 3 6 Log[-#1 + (1 + Tan[x]?) ] #1 RootSum?[2 - 2 #1 + #1 & , ----------------------------- & ]? 3 -1 + #1 Out[1]?= ------------------------------------------------------------- 2

In[2]:= ?RootSum? RootSum?[f, form]? represents the sum of form[x]? for all x that satisfy the polynomial equation f[x]? == 0. " class="equation" src="images/585158006443671166-16.0px.png" align="bottom" Style="vertical-align:text-bottom" width="793" height="1123"/>

Is the function "n-th root of some univariate polynomial" elementary?

Martin

typo in title --kratt6, Thu, 05 Apr 2007 15:04:40 -0500 reply
Name: #346 Returns format integration sign for (1 + tan(x))^(1/3), which is elementary => #346 Returns formal integration sign for (1 + tan(x))^(1/3), which is elementary