|
|
last edited 10 years ago by test1 |
1 2 3 4 5 | ||
Editor: test1
Time: 2014/04/15 18:03:20 GMT+0 |
||
Note: |
changed: -$$(3**x+5**x)**(1/x)$$ $$(3^x+5^x)^{1/x}$$ changed: -$$(3**x+5**x)**(1/x) = 5 * ((3/5)**x+1)**(1/x) \rightarrow 5$$ $$(3^x+5^x)^{1/x} = 5 * ((3/5)^x+1)^{1/x} \rightarrow 5$$ changed: -limit((3**x+5**x)**(1/x), x=%plusInfinity) limit((3^x+5^x)^(1/x), x=%plusInfinity) changed: -limit((3**(1/x)+5**(1/x))**(x), x=0, "right") limit((3^(1/x)+5^(1/x))^(x), x=0, "right") added: Now it works.
On March 25, 2007 11:54 AM Ondrej Certik asked:
... how can I calculate the limit of:
for ?
The result is 5 as you can check by hand:
When I tried that in axiom:
limit((3^x+5^x)^(1/x),x=%plusInfinity)
(1) |
or the equivalent problem:
limit((3^(1/x)+5^(1/x))^(x),x=0, "right")
(2) |
I got "failed".
Now it works.
See also #297