login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for #345 fails to compute some simple limits revision 3 of 5

1 2 3 4 5
Editor: test1
Time: 2014/04/15 18:03:20 GMT+0
Note:

changed:
-$$(3**x+5**x)**(1/x)$$
$$(3^x+5^x)^{1/x}$$

changed:
-$$(3**x+5**x)**(1/x) = 5 * ((3/5)**x+1)**(1/x) \rightarrow 5$$
$$(3^x+5^x)^{1/x} = 5 * ((3/5)^x+1)^{1/x} \rightarrow 5$$

changed:
-limit((3**x+5**x)**(1/x), x=%plusInfinity)
limit((3^x+5^x)^(1/x), x=%plusInfinity)

changed:
-limit((3**(1/x)+5**(1/x))**(x), x=0, "right")
limit((3^(1/x)+5^(1/x))^(x), x=0, "right")

added:

Now it works.

Submitted by : (unknown) at: 2007-11-17T22:30:32-08:00 (17 years ago)
Name :
Axiom Version :
Category : Severity : Status :
Optional subject :  
Optional comment :

On March 25, 2007 11:54 AM Ondrej Certik asked:

... how can I calculate the limit of:

(3^x+5^x)^{1/x} 

for x \rightarrow +\infty?

The result is 5 as you can check by hand:

(3^x+5^x)^{1/x} = 5 <em> ((3/5)^x+1)^{1/x} \rightarrow 5 

When I tried that in axiom:

fricas
limit((3^x+5^x)^(1/x), x=%plusInfinity)

\label{eq1}5(1)
Type: Union(OrderedCompletion?(Expression(Integer)),...)

or the equivalent problem:

fricas
limit((3^(1/x)+5^(1/x))^(x), x=0, "right")

\label{eq2}5(2)
Type: Union(OrderedCompletion?(Expression(Integer)),...)

I got "failed".

Now it works.

Category: Axiom Mathematics => Axiom Library

See also #297