|
|
last edited 15 years ago by flyboy788 |
1 2 | ||
Editor: nhanlm0601
Time: 2009/06/19 12:31:37 GMT-7 |
||
Note: |
changed: - \begin{axiom} integrate(1/(1+x^4),x=%minusInfinity..%plusInfinity) \end{axiom} is obviously wrong. UPDATE: *this* problem is fixed in FriCAS. \begin{axiom} integrate(1/(1+x^4),x) \end{axiom} is an antiderivative only for $x\not\in\{-\frac{\sqrt2}2,\frac{\sqrt2}2\}$. The correct antiderivative, i.e., which is defined on all of $\mathbb R$ can be obtained from the above expression by replacing $\atan\frac1z$ with $\frac\pi2-\atan z$. UPDATE: *this* problem is also fixed in FriCAS, although the result could be simpler. For example, mathematica 5.2 gives:: In[10]:= Integrate[1/(1+x^4), x] Out[10]= (-2 ArcTan[1 - Sqrt[2] x] + 2 ArcTan[1 + Sqrt[2] x] - 2 2 Log[-1 + Sqrt[2] x - x ] + Log[1 + Sqrt[2] x + x ]) / (4 Sqrt[2]) However, \begin{axiom} integrate((x^4+2*a*x^2+1)^-1, x=0..%plusInfinity, "noPole") \end{axiom} is wrong, also in FriCAS. However, the solution really depends on the value of a. Mathematica 5.2 gives:: In[2]:= Integrate[(x^4+2*a*x^2+1)^-1, {x,0,Infinity}] 2 Out[2]= If[Im[Sqrt[-a - Sqrt[-1 + a ]]] > 0 && 2 Im[Sqrt[-a + Sqrt[-1 + a ]]] > 0, -I 2 2 (-- Pi) / (Sqrt[-a - Sqrt[-1 + a ]] Sqrt[-a + Sqrt[-1 + a ]] 2 2 2 (Sqrt[-a - Sqrt[-1 + a ]] + Sqrt[-a + Sqrt[-1 + a ]])), 1 Integrate[---------------, {x, 0, Infinity}, 2 4 1 + 2 a x + x Assumptions -> 2 2 Im[Sqrt[-a - Sqrt[-1 + a ]]] <= 0 || Im[Sqrt[-a + Sqrt[-1 + a ]]] <= 0] ] The definite version seems to be correct: \begin{axiom} D(integrate((x^4+2*a*x^2+1)^-1, x=0..b, "noPole"), b) \end{axiom} From kratt6 Thu Jan 10 01:28:46 -0800 2008 From: kratt6 Date: Thu, 10 Jan 2008 01:28:46 -0800 Subject: another similar evaluation Message-ID: <20080110012846-0800@axiom-wiki.newsynthesis.org> The following also seems to be wrong: \begin{axiom} ex := integrate(1/(a+x**4),x=0..%plusInfinity, "noPole") eval(ex, a=1) \end{axiom} compare with \begin{axiom} integrate(1/(1+x**4),x=0..%plusInfinity, "noPole") \end{axiom} From dsadsadas Sun Sep 14 18:14:52 -0700 2008 From: dsadsadas Date: Sun, 14 Sep 2008 18:14:52 -0700 Subject: Message-ID: <20080914181452-0700@axiom-wiki.newsynthesis.org> Name: '#293 integrate (1/(1+x^4),x = %minusInfinity..%plusInfinity)' => '#293 integrate (1/(1+x^4)' From japp Tue Oct 14 06:02:32 -0700 2008 From: japp Date: Tue, 14 Oct 2008 06:02:32 -0700 Subject: From Fricas Message-ID: <20081014060232-0700@axiom-wiki.newsynthesis.org> http://fricas.svn.sourceforge.net/viewvc/fricas/trunk/src/algebra/gaussian.spad.pamphlet?r1=257&r2=358&view=patch From gdr Fri Oct 17 17:13:47 -0700 2008 From: gdr Date: Fri, 17 Oct 2008 17:13:47 -0700 Subject: Patch applied to OpenAxiom Message-ID: <20081017171347-0700@axiom-wiki.newsynthesis.org> I'm not sure it solves the issue though. From kratt6 Wed Nov 12 09:16:26 -0800 2008 From: kratt6 Date: Wed, 12 Nov 2008 09:16:26 -0800 Subject: Message-ID: <20081112091626-0800@axiom-wiki.newsynthesis.org> Name: '#293 integrate 1/(1+x)^4' => '#293 integrate 1/(1+x^4)' From kratt6 Tue Jan 27 21:05:46 -0800 2009 From: kratt6 Date: Tue, 27 Jan 2009 21:05:46 -0800 Subject: Message-ID: <20090127210546-0800@axiom-wiki.newsynthesis.org> Name: '#293 integrate 1/(4x^2-1)' => '#293 integrate 1/(1+x^4)' From faboabdo Wed Feb 25 10:53:23 -0800 2009 From: faboabdo Date: Wed, 25 Feb 2009 10:53:23 -0800 Subject: Message-ID: <20090225105323-0800@axiom-wiki.newsynthesis.org> Name: '#293 integrate 1/(1+x^4)' => '#293 integrate 1x/(1+x^4)' From nhanlm0601 Tue May 26 17:12:46 -0700 2009 From: nhanlm0601 Date: Tue, 26 May 2009 17:12:46 -0700 Subject: Message-ID: <20090526171246-0700@axiom-wiki.newsynthesis.org> Name: '#293 integrate 1x/(1+x^4)' => '#293 integrate 1/(1+x^4)'
integrate(1/(1+x^4),x=%minusInfinity..%plusInfinity)
(1) |
is obviously wrong. UPDATE: this problem is fixed in FriCAS?.
integrate(1/(1+x^4),x)
(2) |
is an antiderivative only for . The correct antiderivative, i.e., which is defined on all of can be obtained from the above expression by replacing with . UPDATE: this problem is also fixed in FriCAS?, although the result could be simpler. For example, mathematica 5.2 gives:
In[10]:= Integrate[1/(1+x^4), x] Out[10]= (-2 ArcTan[1 - Sqrt[2] x] + 2 ArcTan[1 + Sqrt[2] x] - 2 2 Log[-1 + Sqrt[2] x - x ] + Log[1 + Sqrt[2] x + x ]) / (4 Sqrt[2])
However,
integrate((x^4+2*a*x^2+1)^-1, x=0..%plusInfinity, "noPole")
(3) |
is wrong, also in FriCAS?. However, the solution really depends on the value of a. Mathematica 5.2 gives:
In[2]:= Integrate[(x^4+2*a*x^2+1)^-1, {x,0,Infinity}] 2 Out[2]= If[Im[Sqrt[-a - Sqrt[-1 + a ]]] > 0 && 2 Im[Sqrt[-a + Sqrt[-1 + a ]]] > 0, -I 2 2 (-- Pi) / (Sqrt[-a - Sqrt[-1 + a ]] Sqrt[-a + Sqrt[-1 + a ]] 2 2 2 (Sqrt[-a - Sqrt[-1 + a ]] + Sqrt[-a + Sqrt[-1 + a ]])), 1 Integrate[---------------, {x, 0, Infinity}, 2 4 1 + 2 a x + x Assumptions -> 2 2 Im[Sqrt[-a - Sqrt[-1 + a ]]] <= 0 || Im[Sqrt[-a + Sqrt[-1 + a ]]] <= 0] ]
The definite version seems to be correct:
D(integrate((x^4+2*a*x^2+1)^-1, x=0..b, "noPole"), b)
(4) |
ex := integrate(1/(a+x**4),x=0..%plusInfinity, "noPole")
(5) |
eval(ex, a=1)
(6) |
compare with
integrate(1/(1+x**4),x=0..%plusInfinity, "noPole")
(7) |
#293 integrate (1/(1+x^4),x = %minusInfinity..%plusInfinity)
=> #293 integrate (1/(1+x^4)
http://fricas.svn.sourceforge.net/viewvc/fricas/trunk/src/algebra/gaussian.spad.pamphlet?r1=257&r2=358&view=patch
I'm not sure it solves the issue though.
Name: #293 integrate 1/(1+x)^4
=> #293 integrate 1/(1+x^4)
Name: #293 integrate 1/(4x^2-1)
=> #293 integrate 1/(1+x^4)
#293 integrate 1/(1+x^4)
=> #293 integrate 1x/(1+x^4)
#293 integrate 1x/(1+x^4)
=> #293 integrate 1/(1+x^4)