Equality of sets demands:
This axiom fails for the domain Set Any
. For example:
fricas
(1) -> X:Set Any
Type: Void
fricas
Y:Set Any
Type: Void
fricas
X:=["x"]
Type: Set(Any)
fricas
Y:=["x"]
Type: Set(Any)
fricas
(X=Y)::Boolean
Type: Boolean
and
fricas
X:=[1.0]
Type: Set(Any)
fricas
Y:=[1.0]
Type: Set(Any)
fricas
(X=Y)::Boolean
Type: Boolean
But notice that the following cases work:
fricas
X:=[1]
Type: Set(Any)
fricas
Y:=[1]
Type: Set(Any)
fricas
(X=Y)::Boolean
Type: Boolean
fricas
Z:Set Union(String,Integer,Float)
Type: Void
fricas
W:Set Union(String,Integer,Float)
Type: Void
fricas
Z:=["x"]
Type: Set(Union(String,Integer,Float))
fricas
W:=["x"]
Type: Set(Union(String,Integer,Float))
fricas
(Z=W)::Boolean
Type: Boolean
Category: Axiom Mathematics => Axiom Library
Status: open => closed