login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Submitted by : (unknown) at: 2007-11-17T22:09:23-08:00 (17 years ago)
Name :
Axiom Version :
Category : Severity : Status :
Optional subject :  
Optional comment :

fricas
(1) -> D(product((1-q^(n-i))/(1-q^(m-i)),i=0..m-1),q)

\label{eq1}{\left({\prod_{
\displaystyle
{i = 0}}^{
\displaystyle
{m - 1}}{\frac{{{q}^{n - i}}- 1}{{{q}^{m - i}}- 1}}}\right)}\ {\left({\sum_{
\displaystyle
{i = 0}}^{
\displaystyle
{m - 1}}{\frac{{{\left(- m + i \right)}\ {{q}^{m - i - 1}}\ {{q}^{n - i}}}+{{\left({{\left(n - i \right)}\ {{q}^{m - i}}}- n + i \right)}\ {{q}^{n - i - 1}}}+{{\left(m - i \right)}\ {{q}^{m - i - 1}}}}{{{\left({{q}^{m - i}}- 1 \right)}\ {{q}^{n - i}}}-{{q}^{m - i}}+ 1}}}\right)}(1)
Type: Expression(Integer)
fricas
f:=operator 'f;
Type: BasicOperator?
fricas
D(product(f(i,q),i=0..m),q)

\label{eq2}{\left(\prod_{
\displaystyle
{i = 0}}^{
\displaystyle
m}{f \left({i , \: q}\right)}\right)}\ {\left(\sum_{
\displaystyle
{i = 0}}^{
\displaystyle
m}{\frac{{f_{, 2}}\left({i , \: q}\right)}{f \left({i , \: q}\right)}}\right)}(2)
Type: Expression(Integer)

I'll try to correct this tomorrow...

Martin

Fortunately, a fix is quite easy, since we know how to differentiate products according to Leibniz rule: Here is a patch to combfunc.spad.pamphlet that also fixes some leftover problems with differentiating sums without bounds and displaying sums and products with and without bounds:

combfunc.spad.pamphlet.patch

property change --kratt6, Tue, 04 Oct 2005 07:38:49 -0500 reply
Status: open => fix proposed

test April release --Bill Page, Wed, 21 Jun 2006 06:23:50 -0500 reply
fricas
)version
"FriCAS 1.3.12 compiled at Sat 7 Jun 23:54:49 CEST 2025" D(product((1-q^(n-i))/(1-q^(m-i)),i=0..m-1),q)

\label{eq3}{\left({\prod_{
\displaystyle
{i = 0}}^{
\displaystyle
{m - 1}}{\frac{{{q}^{n - i}}- 1}{{{q}^{m - i}}- 1}}}\right)}\ {\left({\sum_{
\displaystyle
{i = 0}}^{
\displaystyle
{m - 1}}{\frac{{{\left(- m + i \right)}\ {{q}^{m - i - 1}}\ {{q}^{n - i}}}+{{\left({{\left(n - i \right)}\ {{q}^{m - i}}}- n + i \right)}\ {{q}^{n - i - 1}}}+{{\left(m - i \right)}\ {{q}^{m - i - 1}}}}{{{\left({{q}^{m - i}}- 1 \right)}\ {{q}^{n - i}}}-{{q}^{m - i}}+ 1}}}\right)}(3)
Type: Expression(Integer)
fricas
f:=operator 'f;
Type: BasicOperator?
fricas
D(product(f(i,q),i=0..m),q)

\label{eq4}{\left(\prod_{
\displaystyle
{i = 0}}^{
\displaystyle
m}{f \left({i , \: q}\right)}\right)}\ {\left(\sum_{
\displaystyle
{i = 0}}^{
\displaystyle
m}{\frac{{f_{, 2}}\left({i , \: q}\right)}{f \left({i , \: q}\right)}}\right)}(4)
Type: Expression(Integer)

fixed in Patch 46 or so --kratt6, Fri, 27 Oct 2006 03:12:40 -0500 reply
Status: fix proposed => closed




  Subject: (replying)   Be Bold !!
  ( 15 subscribers )  
Please rate this page: