|
|
last edited 11 years ago by Bill Page |
1 2 3 4 5 6 7 8 9 10 11 | ||
Editor: test1
Time: 2013/04/23 19:43:07 GMT+0 |
||
Note: |
changed: -)library MONAL PROP LIN )library MONAL PROP LOP changed: -𝐋 := LinearOperator(dim, OVAR [], ℚ) -𝐞:ℒ 𝐋 := basisVectors() -𝐝:ℒ 𝐋 := basisForms() 𝐋 := LinearOperator(OVAR ['1, '2], ℚ) 𝐞:ℒ 𝐋 := basisOut() 𝐝:ℒ 𝐋 := basisIn()
Non-degeneracy of the pairing
Ref:
Frobenius algebras and 2D topological quantum field theories
Section 2.3.11, page 112.
Section 2.2.9, page 23.
Joachim Kock
Categorical Aspects of Topological Quantum Field Theories
Section 2.3.3, page 27.
Bruce H. Bartlett
![]() |
We use the Axiom LinearOperator? library
)library MONAL PROP LOP
Monoidal is now explicitly exposed in frame initial Monoidal will be automatically loaded when needed from /var/aw/var/LatexWiki/MONAL.NRLIB/MONAL Prop is now explicitly exposed in frame initial Prop will be automatically loaded when needed from /var/aw/var/LatexWiki/PROP.NRLIB/PROP LinearOperator is now explicitly exposed in frame initial LinearOperator will be automatically loaded when needed from /var/aw/var/LatexWiki/LOP.NRLIB/LOP
and convenient notation
macro Σ(x,i, n)==reduce(+, [x for i in n])
macro Ξ(f,i, n)==[f for i in n]
macro sb == subscript
macro sp == superscript
Let 𝐋 be the domain of 2-dimensional linear operators
dim:=2
![]() | (1) |
macro ℒ == List
macro ℚ == Expression Integer
𝐋 := LinearOperator(OVAR ['1,'2], ℚ)
![]() | (2) |
𝐞:ℒ 𝐋 := basisOut()
![]() | (3) |
𝐝:ℒ 𝐋 := basisIn()
![]() | (4) |
I:𝐋:=[1] -- identity for composition
![]() | (5) |
X:𝐋:=[2,1] -- twist
![]() | (6) |
A scalar product (pairing) is represented by
U:=Σ(Σ(sp('u,[i, j])*𝐝.i*𝐝.j, i, 1..dim), j, 1..dim)
![]() | (7) |
In general we do not require that it be symmetric.
Solve the "snake relation" as a system of linear equations.
Ω:𝐋:=Σ(Σ(sb('u,[i, j])*𝐞.i*𝐞.j, i, 1..dim), j, 1..dim)
![]() | (8) |
Í:=(I*Ω)/(U*I);
Function: contract : (Integer,%, Integer, %, Integer) -> % is missing from domain: CartesianTensor(1, 2, Expression(Integer)) Internal Error The function contract with signature $(Integer)$(Integer)$(Integer) is missing from domain CartesianTensor12(Expression (Integer))
This is equivalent to a matrix inverse (transposed!)
Um:=matrix Ξ(Ξ((𝐞.i*𝐞.j)/U,i, 1..dim), j, 1..dim)
Function: contract : (Integer,%, Integer, %, Integer) -> % is missing from domain: CartesianTensor(1, 2, Expression(Integer)) Internal Error The function contract with signature $(Integer)$(Integer)$(Integer) is missing from domain CartesianTensor12(Expression (Integer))
Check that the snake relation holds
test ( I Ω ) / ( U I ) = I
Function: contract : (Integer,%, Integer, %, Integer) -> % is missing from domain: CartesianTensor(1, 2, Expression(Integer)) Internal Error The function contract with signature $(Integer)$(Integer)$(Integer) is missing from domain CartesianTensor12(Expression (Integer))
![]() |
d:= Ω / U
Function: contract : (Integer,%, Integer, %, Integer) -> % is missing from domain: CartesianTensor(1, 2, Expression(Integer)) Internal Error The function contract with signature $(Integer)$(Integer)$(Integer) is missing from domain CartesianTensor12(Expression (Integer))
This "twisted" quantity does not.
![]() |
d':= Ω / X / U
Function: contract : (Integer,%, Integer, %, Integer) -> % is missing from domain: CartesianTensor(1, 2, Expression(Integer)) Internal Error The function contract with signature $(Integer)$(Integer)$(Integer) is missing from domain CartesianTensor12(Expression (Integer))
Repeat the calculation, assuming that U is symmetric.
sym:=groebner ravel(U-X/U)
Function: contract : (Integer,%, Integer, %, Integer) -> % is missing from domain: CartesianTensor(1, 2, Expression(Integer)) Internal Error The function contract with signature $(Integer)$(Integer)$(Integer) is missing from domain CartesianTensor12(Expression (Integer))
Um:=matrix Ξ(Ξ((𝐞.i*𝐞.j)/U,i, 1..dim), j, 1..dim)
Function: contract : (Integer,%, Integer, %, Integer) -> % is missing from domain: CartesianTensor(1, 2, Expression(Integer)) Internal Error The function contract with signature $(Integer)$(Integer)$(Integer) is missing from domain CartesianTensor12(Expression (Integer))
Check that the snake relation holds
test ( I Ω ) / ( U I ) = I
Function: contract : (Integer,%, Integer, %, Integer) -> % is missing from domain: CartesianTensor(1, 2, Expression(Integer)) Internal Error The function contract with signature $(Integer)$(Integer)$(Integer) is missing from domain CartesianTensor12(Expression (Integer))
These quantities no longer depends on !
d:= Ω / U
Function: contract : (Integer,%, Integer, %, Integer) -> % is missing from domain: CartesianTensor(1, 2, Expression(Integer)) Internal Error The function contract with signature $(Integer)$(Integer)$(Integer) is missing from domain CartesianTensor12(Expression (Integer))
d':= Ω / X / U
Function: contract : (Integer,%, Integer, %, Integer) -> % is missing from domain: CartesianTensor(1, 2, Expression(Integer)) Internal Error The function contract with signature $(Integer)$(Integer)$(Integer) is missing from domain CartesianTensor12(Expression (Integer))