Konrad Schrempf 
Since I never tried the ansatz (of Daniel
Smertnig) and I needed something to warm up again (for
programming in FriCAS?) I did it now ...
Factorization of non-commutative polynomials
  in the free associative algebra XDPOLY using an ansatz
  Idea: Daniel Smertnig, January 26, 2017
  Test: Konrad Schrempf, Mit 2018-07-04 10:33
fricas
--)read nc_ini03
ALPHABET := ['x, 'y, 'z];
Type: List(OrderedVariableList
?([x,
y,
z]))
 
fricas
OVL ==> OrderedVariableList(ALPHABET)
Type: Void
fricas
OFM ==> FreeMonoid(OVL)
Type: Void
fricas
F ==> Fraction(Integer)
Type: Void
fricas
G ==> Fraction(Polynomial(Integer))
Type: Void
fricas
XDP ==> XDPOLY(OVL, F)
Type: Void
fricas
YDP ==> XDPOLY(OVL, G)
Type: Void
fricas
--NCP ==> NCPOLY(OVL, F)
x := 'x::OFM;
Type: FreeMonoid
?(OrderedVariableList
?([x,
y,
z]))
 
fricas
y := 'y::OFM;
Type: FreeMonoid
?(OrderedVariableList
?([x,
y,
z]))
 
fricas
z := 'z::OFM;
Type: FreeMonoid
?(OrderedVariableList
?([x,
y,
z]))
 
fricas
OF ==> OutputForm
Type: Void
fricas
p_1 : XDP := x*(1-y*x);
Type: XDistributedPolynomial
?(OrderedVariableList
?([x,
y,
z]),
Fraction(Integer))
 
fricas
leftSubwords(p:XDP) : List(YDP) ==
  lst_wrd : List(OFM) := []
  for mon in support(p) repeat
    wrd := 1$OFM
    for fct in factors(mon) repeat
      for i in 1 .. fct.exp repeat
        pos := position(wrd, lst_wrd)::NNI
        if zero?(pos) then
          lst_wrd := cons(wrd, lst_wrd)
        wrd := wrd*(fct.gen)::OFM
  lst_pol : List(YDP) := []
  cnt_pol := #lst_wrd
  for wrd in lst_wrd repeat
    sym_tmp := (a[cnt_pol])::Symbol
    lst_pol := cons(sym_tmp*wrd::YDP, lst_pol)
    cnt_pol := (cnt_pol-1)::NNI
  lst_pol
   Function declaration leftSubwords : XDistributedPolynomial(
      OrderedVariableList([x,y,z]),Fraction(Integer)) -> List(
      XDistributedPolynomial(OrderedVariableList([x,y,z]),Fraction(
      Polynomial(Integer)))) has been added to workspace.
Type: Void
fricas
rightSubwords(p:XDP) : List(YDP) ==
  lst_wrd : List(OFM) := []
  for mon in support(p) repeat
    wrd := 1$OFM
    for fct in reverse(factors(mon)) repeat
      for i in 1 .. fct.exp repeat
        pos := position(wrd, lst_wrd)::NNI
        if zero?(pos) then
          lst_wrd := cons(wrd, lst_wrd)
        wrd := (fct.gen)::OFM*wrd
  lst_pol : List(YDP) := []
  cnt_pol := #lst_wrd
  for wrd in lst_wrd repeat
    sym_tmp := (b[cnt_pol])::Symbol
    lst_pol := cons(sym_tmp*wrd::YDP, lst_pol)
    cnt_pol := (cnt_pol-1)::NNI
  lst_pol
   Function declaration rightSubwords : XDistributedPolynomial(
      OrderedVariableList([x,y,z]),Fraction(Integer)) -> List(
      XDistributedPolynomial(OrderedVariableList([x,y,z]),Fraction(
      Polynomial(Integer)))) has been added to workspace.
Type: Void
fricas
factorizationPolynomial(p:XDP) : YDP ==
  lsw := leftSubwords(p)
  rsw := rightSubwords(p)
  fp := 0$YDP
  for lw in lsw repeat
    for rw in rsw repeat
      fp := fp + lw*rw
  fp
   Function declaration factorizationPolynomial : 
      XDistributedPolynomial(OrderedVariableList([x,y,z]),Fraction(
      Integer)) -> XDistributedPolynomial(OrderedVariableList([x,y,z]),
      Fraction(Polynomial(Integer))) has been added to workspace.
Type: Void
fricas
factorizationEquations(p:XDP) : List(G) ==
  lst_eqn : List(G) := []
  fp := factorizationPolynomial(p)
  for mon in support(fp) repeat
    c_1 := coefficient(p, mon)
    c_2 := coefficient(fp, mon)
    lst_eqn := cons(c_2-c_1::G, lst_eqn)
  lst_eqn
   Function declaration factorizationEquations : XDistributedPolynomial
      (OrderedVariableList([x,y,z]),Fraction(Integer)) -> List(Fraction
      (Polynomial(Integer))) has been added to workspace.
Type: Void
fricas
p0 := factorizationEquations(x::XDP)
fricas
Compiling function leftSubwords with type XDistributedPolynomial(
      OrderedVariableList([x,y,z]),Fraction(Integer)) -> List(
      XDistributedPolynomial(OrderedVariableList([x,y,z]),Fraction(
      Polynomial(Integer)))) 
fricas
Compiling function rightSubwords with type XDistributedPolynomial(
      OrderedVariableList([x,y,z]),Fraction(Integer)) -> List(
      XDistributedPolynomial(OrderedVariableList([x,y,z]),Fraction(
      Polynomial(Integer)))) 
fricas
Compiling function factorizationPolynomial with type 
      XDistributedPolynomial(OrderedVariableList([x,y,z]),Fraction(
      Integer)) -> XDistributedPolynomial(OrderedVariableList([x,y,z]),
      Fraction(Polynomial(Integer))) 
fricas
Compiling function factorizationEquations with type 
      XDistributedPolynomial(OrderedVariableList([x,y,z]),Fraction(
      Integer)) -> List(Fraction(Polynomial(Integer))) 
fricas
Compiling function G739 with type Integer -> Boolean
 
Type: List(Fraction(Polynomial(Integer)))
fricas
solve(p0)
Type: List(List(Equation(Fraction(Polynomial(Integer)))))
shows that x is irreducible ;-).
fricas
p1 := x::XDP * y::XDP
Type: XDistributedPolynomial
?(OrderedVariableList
?([x,
y,
z]),
Fraction(Integer))
 
fricas
l1 := leftSubwords(p1)
Type: List(XDistributedPolynomial
?(OrderedVariableList
?([x,
y,
z]),
Fraction(Polynomial(Integer))))
 
fricas
r1 := rightSubwords(p1)
Type: List(XDistributedPolynomial
?(OrderedVariableList
?([x,
y,
z]),
Fraction(Polynomial(Integer))))
 
fricas
pe1 := factorizationPolynomial(p1)
Type: XDistributedPolynomial
?(OrderedVariableList
?([x,
y,
z]),
Fraction(Polynomial(Integer)))
 
fricas
fe1 := factorizationEquations(p1)
Type: List(Fraction(Polynomial(Integer)))
fricas
ve1 := members set concat map(variables,fe1)
Type: List(Symbol)
fricas
s1 := solve(concat [fe1,[ve1.2-1]])
Type: List(List(Equation(Fraction(Polynomial(Integer)))))
fricas
p1 := (x::XDP+1)^2
Type: XDistributedPolynomial
?(OrderedVariableList
?([x,
y,
z]),
Fraction(Integer))
 
fricas
pe1 := factorizationPolynomial(p1)
Type: XDistributedPolynomial
?(OrderedVariableList
?([x,
y,
z]),
Fraction(Polynomial(Integer)))
 
fricas
fe1 := factorizationEquations(p1)
Type: List(Fraction(Polynomial(Integer)))
fricas
ve1 := members set concat map(variables,fe1)
Type: List(Symbol)
fricas
solve(concat [fe1,[ve1.1-1]])
Type: List(List(Equation(Fraction(Polynomial(Integer)))))
fricas
solve(factorizationEquations((x::XDP+y::XDP)^2))
   >> Error detected within library code:
   system does not have a finite number of solutions
Well for non-trivial
polynomials solve does not work. One could try Groebner-
Shirshov bases, etc.
In principle it should work with general base rings, for
example the integers. But I do not know the capabilities
of solve. Anyway, I hope that it could be useful within
XDPOLY (at least for small polynomials, because the num-
ber of non-linear equations is increasing exponentially).
The file in the attachment is meant to put on github
for discussions.
https://github.com/billpage/ncpoly