login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxXHashTable revision 1 of 1

1
Editor: Bill Page
Time: 2015/03/23 04:53:04 GMT+0
Note: user specified equality

changed:
-
A hash table implementation via double hashing

  author Ralf Hemmecke

  original source dated 14-Sep-2012

  Abstract

    A hash table domain is implemented. Hash tables are like arrays in the
sense that they allow to insert/extract/delete an element in almost
constant time.

  Revision

    Modified by Bill Page to allow user specified equality.

  Overview

    We implement a hash table domain that uses a double hashing strategy.
The main idea is as follows. An extensible array of buckets is used to
store key/entry pairs where the index is computed using a hash
function. If two keys happen to have the same hash value $h_1$, i.e.,
another key/entry pair would have to be stored in the same bucket, a
second hash function is employed to compute another value $h_2$. Then
$h_1+i\cdot h_2$ modulo the array size is used to look for another
free bucket by increasing $i$.

With double hashing it is important to have a special distinct value
that marks an unused vacant bucket. Furthermore, because of the way
the entries are stored via double hashing, deletion of an entry can
just happen by overriding the position with a distinct marker. Thus a
second distinct value is necessary that marks a bucket that has once
been filled but whose value has subsequently been deleted. We call
these marker values VACANT' and 'DELETED',
respectively. 'VACANT' and 'DELETED' should not be part
of the key space.

Let's assume that the type of the marker values is 'Marker'.
Naively, and type correctly, we would have to use as representation
like the following::

  Union(Marker, Record(key: Key, entry: Entry))

Of course, for efficiency reasons that is undesirable. For storing
one new key/entry pair, we would have to allocate memory in order to
form the record and another allocation to form the union of the
markers and pairs. Therefore, we assume that markers keys and entries
all need the same amount of memory (which is basically the size of a
pointer) and store markers, keys, and entries in a flat way.

Keys are distinguished from entries by storing keys only in the first
half of the array and entries in the second half. Markers can only
appear in the first half of the array (instead of a key). If the index
corresponding to a key is $p$ and $n$ is half the size of the
array, then the entry corresponding to the key is stored at index $p+n$.

A type in FriCAS that can hold a pointer is 'None'. However,
since 'None' is actually a technical domain that does not have
any inhabitants and is not expressing our idea logically, we introduce
a type 'UMKE' to stand for 'Union(Marker, Key, Entry)' and
represent it by 'None'. For efficiency reasons, 'UMKE'
and its coercions from/to the respective domains will be implemented
via macros.

\begin{spad}
)abbrev domain XHASHTBL XHashTable

rep x ==> (x@%) pretend Rep
per x ==> (x@Rep) pretend %


N ==> NonNegativeInteger
Z ==> Integer
I ==> SingleInteger
B ==> Boolean


++ Author: Ralf Hemmecke
++ Keywords: hash table
++ Description:
++ An implementation of a hash table that uses equality of the key domain
++ or a user specified function to decide upon equality of keys.
XHashTable(Key: SetCategory, Entry: Type):
  Join(TableAggregate(Key, Entry), finiteAggregate, shallowlyMutable) with
    table: (Key -> SingleInteger) -> %
      ++ table(h) creates an empty hash table that uses h instead of
      ++ hash$Key. Note that h should be a mathematical function in
      ++ the sense that from k1=k2 follows h(k1)=h(k2). If that is not
      ++ the case, k1 and k2 will internally be considered as being
      ++ different keys.
    table: (Key -> SingleInteger,(Key,Key) -> Boolean) -> %
      ++ table(h,eq) creates an empty hash table that uses eq instead
      ++ of the "=" from the Key domain. Note that h and eq must be
      ++ compatible in the sense that h(k1)~=h(k2) -> not eq(k1,k2)
 == add
    KE ==> Record(key: Key, entry: Entry)
    UE ==> Union(Entry, "failed")


    Marker ==> None
    toMarker mk ==> mk@Marker -- note that MKey==Marker==UMKE
    VACANT : Marker := (HASHTABLEVACANT$Lisp)  pretend Marker -- pos never used
    DELETED: Marker := (HASHTABLEDELETED$Lisp) pretend Marker -- pos is deleted
    vacant?(mk)  ==> EQ(toMarker mk, VACANT)$Lisp
    deleted?(mk) ==> EQ(toMarker mk, DELETED)$Lisp
    key?(mk) ==> not (vacant? mk or deleted? mk)


    MKey ==> None
    UMKE ==> None
    Buckets ==> PrimitiveArray UMKE

    numOfBuckets(a) ==> shift(#a, -1)


    toUMKE x ==> x pretend UMKE
    toKey k ==> (k@UMKE) pretend Key
    getMKey(a, i)    ==> ((a.i)@UMKE) pretend MKey
    setKey!(a, i, k) ==> (a.i := toUMKE k) pretend Key
    getEntry(a, n, i)     ==> a(n+i) pretend Entry
    setEntry!(a, n, i, e)  ==> (a(n+i) := toUMKE e) pretend Entry
    setKeyEntry!(a, n, i, k, e) ==> (setKey!(a, i, k); setEntry!(a, n, i, e))
    -- deleteKeyEntry!(a, n, i) ==> setKeyEntry!(a, n, i, DELETED, VACANT)
    deleteKeyEntry!(a, n, i) ==>
        (a.i := toUMKE DELETED; a(n+i) := toUMKE VACANT)


    maxLoad n ==> n*7 quo 10 -- load factor
    maxVirtualLoad n ==> n*9 quo 10  -- virtual load factor



    arrayLengths: PrimitiveArray N := [[_
        7, 13, 31, 61, 109, 241, 463, 1021, 2029, 4093, 8089, 16363,_
        32719, 65521, 131011, 262111, 524221, 1048573, 2097133,_
        4193803, 8388451, 16777141, 33554011, 67108669, 134217439,_
        268435009, 536870839, 1073741719, 2147482951, 4294965841,_
        8589934291, 17179868809, 34359737299, 68719476391,_
        137438953273, 274877906629, 549755813359, 1099511626399]]


    Rep ==> Record(_
        numOfEntries: Z,_
        maxNumOfEntries: Z,_
        numOfDeletedEntries: Z,_
        maxNumOfVirtualEntries: Z,_
        idx: Z,_
        arr: Buckets,_
        hashFunction: Key -> I,_
        eqFunction: (Key,Key) -> Boolean)


    localSearch(a: Buckets, k: Key, h: Key -> I, eq:(Key,Key) -> B): Z ==
        update!(p, mk) ==>
            p := p + h2
            if p>=n then p := p-n
            mk := getMKey(a, p)

        n: Z := numOfBuckets a
        h1: Z := (h k)::Z
        p: Z := positiveRemainder(h1, n) -- position in array
        h2: Z := 1 + positiveRemainder(h1, n-2)
        mk: MKey := getMKey(a, p)
        deletedPosition?: Boolean := false
        while not vacant? mk repeat
            deleted? mk => (deletedPosition? := true; break)
            eq(k,toKey mk) => return p -- key found
            update!(p, mk)
        q := p -- first position of a free entry
        -- We ignore DELETED entries when looking for the key.
        while not vacant? mk repeat
            not deleted? mk and eq(k,toKey mk) =>
                setKeyEntry!(a, n, q, k, getEntry(a, n, p))
                deleteKeyEntry!(a, n, p)
                return q -- entry has been copied to previous DELETED position
            update!(p, mk)
        if deletedPosition? then q := q-n
        q-n -- KEY not found.


    newArr(n: N): Buckets == new(2*n, toUMKE VACANT)


    rehashAux!(x: %, ix: Z): % ==
        m: N := arrayLengths ix
        r: Rep := rep x
        h: Key -> I := r.hashFunction
        eq: (Key,Key) -> B := r.eqFunction
        a: Buckets := r.arr
        n: Z := numOfBuckets a
        c: Buckets := newArr m
        for i in 0..n-1 | key?(mk: MKey := getMKey(a, i)) repeat
            k: Key := toKey mk
            -- Note that k is not in c, and there are no DELETED positions.
            -- Thus, -m<=p<0.
            p := m + localSearch(c, k, h, eq)
            setKeyEntry!(c, m, p, k, getEntry(a, n, i))
        r.arr := c  --destructively set new array
        r.idx := ix
        r.maxNumOfEntries := maxLoad m
        r.numOfDeletedEntries := 0
        r.maxNumOfVirtualEntries := maxVirtualLoad m
        x


    grow!(x: %): % == rehashAux!(x, rep(x).idx + 1)


    rehash!(x: %): % == rehashAux!(x, rep(x).idx)


    table(hashfunction: Key -> SingleInteger,eqfunction: (Key,Key) -> Boolean): % ==
        n: N := arrayLengths 0
        maxEntries: Z := maxLoad n
        maxVirtualEntries: Z := maxVirtualLoad n
        hashfunction := forceLazySlot((hash$Key)@(Key -> I))$Lisp pretend (Key->I)
        per [0, maxEntries, 0, maxVirtualEntries, 0, newArr n, hashfunction, eqfunction]
    table(hashfunction: Key -> SingleInteger): % ==
        table(hashfunction,forceLazySlot((_=$Key)@((Key,Key) -> B))$Lisp pretend ((Key,Key)->B))
    empty(): % ==
        table(forceLazySlot((hash$Key)@(Key -> I))$Lisp pretend (Key->I))


    inspect(x: %): KE ==
        a := rep(x).arr
        n: Z := numOfBuckets a
        for i in 0..n - 1 | key?(mk: MKey := getMKey(a, i)) repeat
            return [toKey mk, getEntry(a, n, i)]
        error "table must be non-empty"


    #(x: %): N == rep(x).numOfEntries :: N


    search(k: Key, x: %): Union(Entry, "failed") ==
        a: Buckets := rep(x).arr
        h: Key -> I := rep(x).hashFunction
        eq: (Key,Key) -> B := rep(x).eqFunction
        p: Z := localSearch(a, k, h, eq)
        p<0 => "failed"
        getEntry(a, numOfBuckets a, p)::UE
    elt(x: %, k: Key): Entry ==
        a: Buckets := rep(x).arr
        h: Key -> I := rep(x).hashFunction
        eq: (Key,Key) -> B := rep(x).eqFunction
        p := localSearch(a, k, h, eq)
        p<0 => error "key not in table"
        getEntry(a, numOfBuckets a, p)
    elt(x: %, k: Key, e: Entry): Entry ==
        a: Buckets := rep(x).arr
        h: Key -> I := rep(x).hashFunction
        eq: (Key,Key) -> B := rep(x).eqFunction
        p := localSearch(a, k, h, eq)
        p<0 => e
        getEntry(a, numOfBuckets a, p)


    setelt!(x: %, k: Key, e: Entry): Entry ==
        if rep(x).numOfEntries >= rep(x).maxNumOfEntries then grow! x
        a: Buckets := rep(x).arr
        h: Key -> I := rep(x).hashFunction
        eq: (Key,Key) -> B := rep(x).eqFunction
        p := localSearch(a, k, h, eq)
        n: Z := numOfBuckets a
        p>=0 => setEntry!(a, n, p, e)
        r: Rep := rep x
        r.numOfEntries := inc(r.numOfEntries)
        p := n+p
        p<0 => -- fill DELETED position
            r.numOfDeletedEntries := dec(r.numOfDeletedEntries)
            setKeyEntry!(a, n, n+p, k, e)
        setKeyEntry!(a, n, p, k, e) -- fill VACANT position
        if r.numOfEntries + r.numOfDeletedEntries > r.maxNumOfVirtualEntries then
            rehash! x
        e


    remove!(k: Key, x: %): Union(Entry, "failed") ==
        a: Buckets := rep(x).arr
        h: Key -> I := rep(x).hashFunction
        eq: (Key,Key) -> B := rep(x).eqFunction
        p := localSearch(a, k, h, eq)
        p<0 => "failed" -- key has not been found
        n: Z := numOfBuckets a
        e: Entry := getEntry(a, n, p) -- to be returned
        deleteKeyEntry!(a, n, p)
        rep(x).numOfEntries := dec(rep(x).numOfEntries)
        rep(x).numOfDeletedEntries := inc(rep(x).numOfDeletedEntries)
        e::UE


    copy(x: %): % ==
        r: Rep := rep x
        per [r.numOfEntries, r.maxNumOfEntries,_
             r.numOfDeletedEntries, r.maxNumOfVirtualEntries,_
             r.idx, copy(r.arr), r.hashFunction, r.eqFunction]


    fill!(x: %, e: Entry): % ==
        a := rep(x).arr
        n: N := numOfBuckets a
        for i in 0..n-1 | key? getMKey(a, i) repeat setEntry!(a, n, i, e)
        x



    map!(f: Entry -> Entry, x: %): % ==
        a := rep(x).arr
        n: N := numOfBuckets a
        for i in 0..n-1 | key? getMKey(a, i) repeat
            setEntry!(a, n, i, f getEntry(a, n, i))
        x


    keys(x: %): List Key ==
        a := rep(x).arr
        l: List Key := empty()
        for i in 0..numOfBuckets a - 1 | key?(mk: MKey := getMKey(a, i)) repeat
            l := cons(toKey mk, l)
        l
    parts(x: %): List Entry ==
        a := rep(x).arr
        n: N := numOfBuckets a
        l: List Entry := empty()
        for i in 0..n-1 | key? getMKey(a, i) repeat
            l := cons(getEntry(a, n, i), l)
        l
    parts(x: %): List KE ==
        a := rep(x).arr
        n: N := numOfBuckets a
        l: List KE := empty()
        for i in 0..n-1 | key?(mk: MKey := getMKey(a, i)) repeat
            l := cons([toKey mk, getEntry(a, n, i)], l)
        l


    removeDuplicates(x: %): % == x


    if Entry has BasicType then
        ((x: %) = (y: %)): Boolean ==
            #x ~= #y => false
            xa := rep(x).arr; xn := numOfBuckets xa
            ya := rep(y).arr; yn := numOfBuckets ya
            h := rep(y).hashFunction
            eq := rep(y).eqFunction
            for i in 0..xn - 1 | key?(mk: MKey := getMKey(xa, i)) repeat
                p := localSearch(ya, toKey mk, h, eq)
                p < 0 => return false
                getEntry(xa, xn, i) ~= getEntry(ya, yn, p) => return false
            true

\end{spad}

A hash table implementation via double hashing

author Ralf Hemmecke

original source dated 14-Sep-2012

Abstract

A hash table domain is implemented. Hash tables are like arrays in the sense that they allow to insert/extract/delete an element in almost constant time.

Revision

Modified by Bill Page to allow user specified equality.

Overview

We implement a hash table domain that uses a double hashing strategy. The main idea is as follows. An extensible array of buckets is used to store key/entry pairs where the index is computed using a hash function. If two keys happen to have the same hash value h_1, i.e., another key/entry pair would have to be stored in the same bucket, a second hash function is employed to compute another value h_2. Then h_1+i\cdot h_2 modulo the array size is used to look for another free bucket by increasing i.

With double hashing it is important to have a special distinct value that marks an unused vacant bucket. Furthermore, because of the way the entries are stored via double hashing, deletion of an entry can just happen by overriding the position with a distinct marker. Thus a second distinct value is necessary that marks a bucket that has once been filled but whose value has subsequently been deleted. We call these marker values VACANT' and DELETED, respectively. VACANT and DELETED should not be part of the key space.

Let's assume that the type of the marker values is Marker. Naively, and type correctly, we would have to use as representation like the following:

  Union(Marker, Record(key: Key, entry: Entry))

Of course, for efficiency reasons that is undesirable. For storing one new key/entry pair, we would have to allocate memory in order to form the record and another allocation to form the union of the markers and pairs. Therefore, we assume that markers keys and entries all need the same amount of memory (which is basically the size of a pointer) and store markers, keys, and entries in a flat way.

Keys are distinguished from entries by storing keys only in the first half of the array and entries in the second half. Markers can only appear in the first half of the array (instead of a key). If the index corresponding to a key is p and n is half the size of the array, then the entry corresponding to the key is stored at index p+n.

A type in FriCAS that can hold a pointer is None. However, since None is actually a technical domain that does not have any inhabitants and is not expressing our idea logically, we introduce a type UMKE to stand for Union(Marker, Key, Entry) and represent it by None. For efficiency reasons, UMKE and its coercions from/to the respective domains will be implemented via macros.

fricas
(1) -> <spad>
fricas
)abbrev domain XHASHTBL XHashTable
rep x ==> (x@%) pretend Rep per x ==> (x@Rep) pretend %
N ==> NonNegativeInteger Z ==> Integer I ==> SingleInteger B ==> Boolean
++ Author: Ralf Hemmecke ++ Keywords: hash table ++ Description: ++ An implementation of a hash table that uses equality of the key domain ++ or a user specified function to decide upon equality of keys. XHashTable(Key: SetCategory, Entry: Type): Join(TableAggregate(Key, Entry), finiteAggregate, shallowlyMutable) with table: (Key -> SingleInteger) -> % ++ table(h) creates an empty hash table that uses h instead of ++ hash$Key. Note that h should be a mathematical function in ++ the sense that from k1=k2 follows h(k1)=h(k2). If that is not ++ the case, k1 and k2 will internally be considered as being ++ different keys. table: (Key -> SingleInteger,(Key,Key) -> Boolean) -> % ++ table(h,eq) creates an empty hash table that uses eq instead ++ of the "=" from the Key domain. Note that h and eq must be ++ compatible in the sense that h(k1)~=h(k2) -> not eq(k1,k2) == add KE ==> Record(key: Key, entry: Entry) UE ==> Union(Entry, "failed")
Marker ==> None toMarker mk ==> mk@Marker -- note that MKey==Marker==UMKE VACANT : Marker := (HASHTABLEVACANT$Lisp) pretend Marker -- pos never used DELETED: Marker := (HASHTABLEDELETED$Lisp) pretend Marker -- pos is deleted vacant?(mk) ==> EQ(toMarker mk, VACANT)$Lisp deleted?(mk) ==> EQ(toMarker mk, DELETED)$Lisp key?(mk) ==> not (vacant? mk or deleted? mk)
MKey ==> None UMKE ==> None Buckets ==> PrimitiveArray UMKE
numOfBuckets(a) ==> shift(#a, -1)
toUMKE x ==> x pretend UMKE toKey k ==> (k@UMKE) pretend Key getMKey(a, i) ==> ((a.i)@UMKE) pretend MKey setKey!(a, i, k) ==> (a.i := toUMKE k) pretend Key getEntry(a, n, i) ==> a(n+i) pretend Entry setEntry!(a, n, i, e) ==> (a(n+i) := toUMKE e) pretend Entry setKeyEntry!(a, n, i, k, e) ==> (setKey!(a, i, k); setEntry!(a, n, i, e)) -- deleteKeyEntry!(a, n, i) ==> setKeyEntry!(a, n, i, DELETED, VACANT) deleteKeyEntry!(a, n, i) ==> (a.i := toUMKE DELETED; a(n+i) := toUMKE VACANT)
maxLoad n ==> n*7 quo 10 -- load factor maxVirtualLoad n ==> n*9 quo 10 -- virtual load factor
arrayLengths: PrimitiveArray N := [[_ 7, 13, 31, 61, 109, 241, 463, 1021, 2029, 4093, 8089, 16363,_ 32719, 65521, 131011, 262111, 524221, 1048573, 2097133,_ 4193803, 8388451, 16777141, 33554011, 67108669, 134217439,_ 268435009, 536870839, 1073741719, 2147482951, 4294965841,_ 8589934291, 17179868809, 34359737299, 68719476391,_ 137438953273, 274877906629, 549755813359, 1099511626399]]
Rep ==> Record(_ numOfEntries: Z,_ maxNumOfEntries: Z,_ numOfDeletedEntries: Z,_ maxNumOfVirtualEntries: Z,_ idx: Z,_ arr: Buckets,_ hashFunction: Key -> I,_ eqFunction: (Key,Key) -> Boolean)
localSearch(a: Buckets, k: Key, h: Key -> I, eq:(Key,Key) -> B): Z == update!(p, mk) ==> p := p + h2 if p>=n then p := p-n mk := getMKey(a, p)
n: Z := numOfBuckets a h1: Z := (h k)::Z p: Z := positiveRemainder(h1, n) -- position in array h2: Z := 1 + positiveRemainder(h1, n-2) mk: MKey := getMKey(a, p) deletedPosition?: Boolean := false while not vacant? mk repeat deleted? mk => (deletedPosition? := true; break) eq(k,toKey mk) => return p -- key found update!(p, mk) q := p -- first position of a free entry -- We ignore DELETED entries when looking for the key. while not vacant? mk repeat not deleted? mk and eq(k,toKey mk) => setKeyEntry!(a, n, q, k, getEntry(a, n, p)) deleteKeyEntry!(a, n, p) return q -- entry has been copied to previous DELETED position update!(p, mk) if deletedPosition? then q := q-n q-n -- KEY not found.
newArr(n: N): Buckets == new(2*n, toUMKE VACANT)
rehashAux!(x: %, ix: Z): % == m: N := arrayLengths ix r: Rep := rep x h: Key -> I := r.hashFunction eq: (Key,Key) -> B := r.eqFunction a: Buckets := r.arr n: Z := numOfBuckets a c: Buckets := newArr m for i in 0..n-1 | key?(mk: MKey := getMKey(a, i)) repeat k: Key := toKey mk -- Note that k is not in c, and there are no DELETED positions. -- Thus, -m<=p<0. p := m + localSearch(c, k, h, eq) setKeyEntry!(c, m, p, k, getEntry(a, n, i)) r.arr := c --destructively set new array r.idx := ix r.maxNumOfEntries := maxLoad m r.numOfDeletedEntries := 0 r.maxNumOfVirtualEntries := maxVirtualLoad m x
grow!(x: %): % == rehashAux!(x, rep(x).idx + 1)
rehash!(x: %): % == rehashAux!(x, rep(x).idx)
table(hashfunction: Key -> SingleInteger,eqfunction: (Key,Key) -> Boolean): % == n: N := arrayLengths 0 maxEntries: Z := maxLoad n maxVirtualEntries: Z := maxVirtualLoad n hashfunction := forceLazySlot((hash$Key)@(Key -> I))$Lisp pretend (Key->I) per [0, maxEntries, 0, maxVirtualEntries, 0, newArr n, hashfunction, eqfunction] table(hashfunction: Key -> SingleInteger): % == table(hashfunction,forceLazySlot((_=$Key)@((Key,Key) -> B))$Lisp pretend ((Key,Key)->B)) empty(): % == table(forceLazySlot((hash$Key)@(Key -> I))$Lisp pretend (Key->I))
inspect(x: %): KE == a := rep(x).arr n: Z := numOfBuckets a for i in 0..n - 1 | key?(mk: MKey := getMKey(a, i)) repeat return [toKey mk, getEntry(a, n, i)] error "table must be non-empty"
#(x: %): N == rep(x).numOfEntries :: N
search(k: Key, x: %): Union(Entry, "failed") == a: Buckets := rep(x).arr h: Key -> I := rep(x).hashFunction eq: (Key,Key) -> B := rep(x).eqFunction p: Z := localSearch(a, k, h, eq) p<0 => "failed" getEntry(a, numOfBuckets a, p)::UE elt(x: %, k: Key): Entry == a: Buckets := rep(x).arr h: Key -> I := rep(x).hashFunction eq: (Key,Key) -> B := rep(x).eqFunction p := localSearch(a, k, h, eq) p<0 => error "key not in table" getEntry(a, numOfBuckets a, p) elt(x: %, k: Key, e: Entry): Entry == a: Buckets := rep(x).arr h: Key -> I := rep(x).hashFunction eq: (Key,Key) -> B := rep(x).eqFunction p := localSearch(a, k, h, eq) p<0 => e getEntry(a, numOfBuckets a, p)
setelt!(x: %, k: Key, e: Entry): Entry == if rep(x).numOfEntries >= rep(x).maxNumOfEntries then grow! x a: Buckets := rep(x).arr h: Key -> I := rep(x).hashFunction eq: (Key,Key) -> B := rep(x).eqFunction p := localSearch(a, k, h, eq) n: Z := numOfBuckets a p>=0 => setEntry!(a, n, p, e) r: Rep := rep x r.numOfEntries := inc(r.numOfEntries) p := n+p p<0 => -- fill DELETED position r.numOfDeletedEntries := dec(r.numOfDeletedEntries) setKeyEntry!(a, n, n+p, k, e) setKeyEntry!(a, n, p, k, e) -- fill VACANT position if r.numOfEntries + r.numOfDeletedEntries > r.maxNumOfVirtualEntries then rehash! x e
remove!(k: Key, x: %): Union(Entry, "failed") == a: Buckets := rep(x).arr h: Key -> I := rep(x).hashFunction eq: (Key,Key) -> B := rep(x).eqFunction p := localSearch(a, k, h, eq) p<0 => "failed" -- key has not been found n: Z := numOfBuckets a e: Entry := getEntry(a, n, p) -- to be returned deleteKeyEntry!(a, n, p) rep(x).numOfEntries := dec(rep(x).numOfEntries) rep(x).numOfDeletedEntries := inc(rep(x).numOfDeletedEntries) e::UE
copy(x: %): % == r: Rep := rep x per [r.numOfEntries, r.maxNumOfEntries,_ r.numOfDeletedEntries, r.maxNumOfVirtualEntries,_ r.idx, copy(r.arr), r.hashFunction, r.eqFunction]
fill!(x: %, e: Entry): % == a := rep(x).arr n: N := numOfBuckets a for i in 0..n-1 | key? getMKey(a, i) repeat setEntry!(a, n, i, e) x
map!(f: Entry -> Entry, x: %): % == a := rep(x).arr n: N := numOfBuckets a for i in 0..n-1 | key? getMKey(a, i) repeat setEntry!(a, n, i, f getEntry(a, n, i)) x
keys(x: %): List Key == a := rep(x).arr l: List Key := empty() for i in 0..numOfBuckets a - 1 | key?(mk: MKey := getMKey(a, i)) repeat l := cons(toKey mk, l) l parts(x: %): List Entry == a := rep(x).arr n: N := numOfBuckets a l: List Entry := empty() for i in 0..n-1 | key? getMKey(a, i) repeat l := cons(getEntry(a, n, i), l) l parts(x: %): List KE == a := rep(x).arr n: N := numOfBuckets a l: List KE := empty() for i in 0..n-1 | key?(mk: MKey := getMKey(a, i)) repeat l := cons([toKey mk, getEntry(a, n, i)], l) l
removeDuplicates(x: %): % == x
if Entry has BasicType then ((x: %) = (y: %)): Boolean == #x ~= #y => false xa := rep(x).arr; xn := numOfBuckets xa ya := rep(y).arr; yn := numOfBuckets ya h := rep(y).hashFunction eq := rep(y).eqFunction for i in 0..xn - 1 | key?(mk: MKey := getMKey(xa, i)) repeat p := localSearch(ya, toKey mk, h, eq) p < 0 => return false getEntry(xa, xn, i) ~= getEntry(ya, yn, p) => return false true</spad>
fricas
Compiling FriCAS source code from file 
      /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/8567553725698274317-25px001.spad
      using old system compiler.
   XHASHTBL abbreviates domain XHashTable 
------------------------------------------------------------------------
   initializing NRLIB XHASHTBL for XHashTable 
   compiling into NRLIB XHASHTBL 
   processing macro definition KE ==> Record(key: Key,entry: Entry) 
   processing macro definition UE ==> Union(Entry,failed) 
   processing macro definition Marker ==> None 
   processing macro definition toMarker mk ==> @(mk,None) 
   processing macro definition vacant? mk ==> (Sel Lisp EQ)(@(mk,None),VACANT) 
   processing macro definition deleted? mk ==> (Sel Lisp EQ)(@(mk,None),DELETED) 
   processing macro definition key? mk ==> SEQ(:=(G0: Boolean,(Sel Lisp EQ)(@(mk,None),VACANT)),exit(1,IF(G0,false,SEQ(:=(G1: Boolean,(Sel Lisp EQ)(@(mk,None),DELETED)),exit(1,IF(G1,false,true)))))) 
   processing macro definition MKey ==> None 
   processing macro definition UMKE ==> None 
   processing macro definition Buckets ==> PrimitiveArray None 
   processing macro definition numOfBuckets a ==> shift(# a,- One) 
   processing macro definition toUMKE x ==> pretend(x,None) 
   processing macro definition toKey k ==> pretend(@(k,None),Key) 
   processing macro definition getMKey(a,i) ==> pretend(@(a i,None),None) 
   processing macro definition setKey!(a,i,k) ==> pretend(:=(a i,pretend(k,None)),Key) 
   processing macro definition getEntry(a,n,i) ==> pretend(a +(n,i),Entry) 
   processing macro definition setEntry!(a,n,i,e) ==> pretend(:=(a +(n,i),pretend(e,None)),Entry) 
   processing macro definition setKeyEntry!(a,n,i,k,e) ==> SEQ(pretend(:=(a i,pretend(k,None)),Key),exit(1,pretend(:=(a +(n,i),pretend(e,None)),Entry))) 
   processing macro definition deleteKeyEntry!(a,n,i) ==> SEQ(:=(a i,pretend(DELETED,None)),exit(1,:=(a +(n,i),pretend(VACANT,None)))) 
   processing macro definition maxLoad n ==> quo(*(n,7),10) 
   processing macro definition maxVirtualLoad n ==> quo(*(n,9),10) 
   processing macro definition Rep ==> Record(numOfEntries: Integer,maxNumOfEntries: Integer,numOfDeletedEntries: Integer,maxNumOfVirtualEntries: Integer,idx: Integer,arr: PrimitiveArray None,hashFunction: Key -> SingleInteger,eqFunction: (Key,Key) -> Boolean) 
   compiling local localSearch : (PrimitiveArray None,Key,Key -> SingleInteger,(Key,Key) -> Boolean) -> Integer
   processing macro definition update!(p,mk) ==> SEQ(:=(p,+(p,h2)),IF(>=(p,n),:=(p,-(p,n)),noBranch),exit(1,:=(mk,pretend(@(a p,None),None)))) 
Time: 0.06 SEC.
compiling local newArr : NonNegativeInteger -> PrimitiveArray None Time: 0 SEC.
compiling local rehashAux! : (%,Integer) -> % Time: 0.03 SEC.
compiling local grow! : % -> % Time: 0 SEC.
compiling local rehash! : % -> % Time: 0 SEC.
compiling exported table : (Key -> SingleInteger,(Key,Key) -> Boolean) -> % ****** comp fails at level 3 with expression: ****** error in function table
(@ (|Sel| |Key| |hash|) (|Mapping| (|SingleInteger|) |Key|)) ****** level 3 ****** $x:= ((Sel Key hash) G74) $m:= (SingleInteger) $f:= ((((#:G74 #) (#:G73 #) (#:G72 #) (|maxVirtualEntries| # #) ...) ((|rehash!| #) (|grow!| #)) ((|grow!| #) (|rehashAux!| #)) ((|rehashAux!| #) (|newArr| #)) ...))
>> Apparent user error: cannot compile ((Sel Key hash) G74)