|
|
last edited 16 years ago by page |
1 2 3 4 | ||
Editor: page
Time: 2007/09/19 00:58:03 GMT-7 |
||
Note: |
changed: -\begin{sageblock} -from sympy import limit -x = Symbol("x") -e=limit((3**(1/x)+5**(1/x))**x, x, 0) -\end{sageblock} - -and the result is: - -\begin{equation} -\sage{e} -\end{equation} test:: !\begin{sageblock} from sympy import limit x = Symbol("x") e=limit((3**(1/x)+5**(1/x))**x, x, 0) \end{sageblock} and the result is:: !\begin{equation} \sage{e} \end{equation}
Running SymPy? in a SageBlock?
SymPy? initialization:
We are running SymPy? version:
First simple confidence test:
The resulting SymPy? expression is:
![]() | (1) |
Here is a simple limit in SymPy?
test:
\begin{sageblock} from sympy import limit x = Symbol("x") e=limit((3**(1/x)+5**(1/x))**x, x, 0) \end{sageblock}
and the result is:
\begin{equation} \sage{e} \end{equation}
Unfortunately for this limit Axiom gives:
.
And Maxima gives:
.
So the Axiom and Maxima developers have some more work to do!
But worse, Reduce actually gets it wrong...
limit((3**(1/x)+5**(1/x))**x, x,0); | reduce |
![]() |
Martin
while Maxima gives:
left (from below): ,
right (from above):
.
On Computing Limits in a Symbolic Manipulation System; Dominik Gruntz. ETH Diss 11432 abstract postscript , 1996.