login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxRibbonCategory revision 1 of 2

1 2
Editor: Bill Page
Time: 2011/05/26 18:54:29 GMT-7
Note: two-colors

changed:
-
Linear operators over a 2-dimensional vector space representing the algebra of complex numbers

We need the Axiom LinearOperator library.
\begin{axiom}
)library CARTEN ARITY CMONAL CPROP CLOP CALEY
\end{axiom}

Use the following macros for convenient notation
\begin{axiom}
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
-- list
macro Ξ(f,i,n)==[f for i in n]
-- subscript and superscripts
macro sb == subscript
macro sp == superscript
\end{axiom}

𝐋 is the domain of 2-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.
\begin{axiom}
dim:=2
macro ℒ == List
macro ℂ == CaleyDickson
macro ℚ == Expression Integer
𝐋 := ClosedLinearOperator(OVAR ['1,'2], ℚ)
𝐞:ℒ 𝐋      := basisOut()
𝐝:ℒ 𝐋      := basisIn()
I:𝐋:=[1]   -- identity for composition
X:𝐋:=[2,1] -- twist
V:𝐋:=ev(1) -- evaluation
Λ:𝐋:=co(1) -- co-evaluation
!:𝐋:=[-1]  -- color change 1 -> 1*
$:𝐋:=dagger ! -- 1* -> 1
J:𝐋:=$/!
test(!/$=I)
equate(eq)==map((x,y)+->(x=y),ravel lhs eq, ravel rhs eq);
\end{axiom}

We want to  be able to implement linear operators with two
"colors" like the following:
$$
\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-4.22)(14.015,4.22)
\psline[linewidth=0.04cm](11.6,2.4)(13.0,3.8)
\psline[linewidth=0.04cm](11.4,2.6)(13.0,4.2)
\psline[linewidth=0.04cm](13.0,4.2)(13.4,4.2)
\psline[linewidth=0.04cm](13.4,4.2)(13.4,0.4)
\psline[linewidth=0.04cm](13.0,4.2)(13.0,1.0)
\psline[linewidth=0.04cm](13.4,0.4)(13.0,0.4)
\psline[linewidth=0.04cm](13.0,0.4)(10.4,3.2)
\psline[linewidth=0.04cm](13.4,0.4)(10.8,3.2)
\psline[linewidth=0.04cm](10.4,1.6)(10.4,0.4)
\psline[linewidth=0.04cm](10.8,1.6)(10.8,0.4)
\psline[linewidth=0.04cm](10.4,3.2)(10.4,4.2)
\psline[linewidth=0.04cm](10.8,3.2)(10.8,4.2)
\psline[linewidth=0.04cm](10.8,1.6)(11.4,2.2)
\psline[linewidth=0.04cm](10.4,1.6)(11.2,2.4)
\psline[linewidth=0.04cm](10.4,0.4)(10.8,0.4)
\psline[linewidth=0.03cm](10.4,4.2)(10.8,4.2)
\psline[linewidth=0.03cm](6.8,4.2)(6.8,0.4)
\psline[linewidth=0.03cm](7.1850057,4.2)(7.1850057,0.41349542)
\psline[linewidth=0.03cm](6.8,0.41349542)(7.1850057,0.41349542)
\psline[linewidth=0.03cm](6.8,4.2)(7.2,4.2)
\usefont{T1}{ptm}{m}{n}
\rput(8.315937,2.335){\large \psframebox*[framesep=0, boxsep=false,fillcolor=white] {=}}
\psline[linewidth=0.03cm,linestyle=dashed,dash=0.16cm 0.16cm](13.2,4.2)(13.2,0.8)
\psline[linewidth=0.04cm](2.4,2.4)(1.0,3.8)
\psline[linewidth=0.04cm](2.6,2.6)(1.0,4.2)
\psline[linewidth=0.04cm](1.0,4.2)(0.6,4.2)
\psline[linewidth=0.04cm](0.6,4.2)(0.6,0.4)
\psline[linewidth=0.04cm](1.0,4.2)(1.0,1.0)
\psline[linewidth=0.04cm](0.6,0.4)(1.0,0.4)
\psline[linewidth=0.04cm](1.0,0.4)(3.6,3.2)
\psline[linewidth=0.04cm](0.6,0.4)(3.2,3.2)
\psline[linewidth=0.04cm](3.6,1.6)(3.6,0.4)
\psline[linewidth=0.04cm](3.2,1.6)(3.2,0.4)
\psline[linewidth=0.04cm](3.6,3.2)(3.6,4.2)
\psline[linewidth=0.04cm](3.2,3.2)(3.2,4.2)
\psline[linewidth=0.04cm](3.2,1.6)(2.6,2.2)
\psline[linewidth=0.04cm](3.6,1.6)(2.8,2.4)
\psline[linewidth=0.04cm](3.6,0.4)(3.2,0.4)
\psline[linewidth=0.03cm](3.6,4.2)(3.2,4.2)
\psline[linewidth=0.03cm,linestyle=dashed,dash=0.16cm 0.16cm](0.8,4.2)(0.8,0.8)
\usefont{T1}{ptm}{m}{n}
\rput(5.5159373,2.335){\large \psframebox*[framesep=0, boxsep=false,fillcolor=white] {=}}
\psline[linewidth=0.03cm,linestyle=dotted,dotsep=0.16cm](0.0,1.6)(14.0,1.6)
\psline[linewidth=0.03cm,linestyle=dotted,dotsep=0.16cm](0.0,3.2)(14.0,3.2)
\usefont{T1}{ptm}{m}{n}
\rput(6.9159374,-2.265){\large \psframebox*[framesep=0, boxsep=false,fillcolor=white] {=}}
\psline[linewidth=0.04cm](4.2,-1.4)(3.2,-0.4)
\psline[linewidth=0.04cm](4.6,-1.4)(3.6,-0.4)
\psline[linewidth=0.04cm](3.6,-0.4)(3.2,-0.4)
\psline[linewidth=0.04cm](3.2,-0.4)(3.2,-4.2)
\psline[linewidth=0.04cm](3.6,-0.8)(3.6,-3.6)
\psline[linewidth=0.04cm](3.2,-4.2)(3.6,-4.2)
\psline[linewidth=0.04cm](3.6,-4.2)(4.6,-3.0)
\psline[linewidth=0.04cm](3.2,-4.2)(4.2,-3.0)
\psline[linewidth=0.03cm,linestyle=dashed,dash=0.16cm 0.16cm](3.4,-0.8)(3.4,-4.0)
\psline[linewidth=0.03cm](4.2,-1.4)(4.2,-3.0)
\psline[linewidth=0.03cm](4.6,-1.4)(4.6,-3.0)
\psline[linewidth=0.04cm](9.6,-1.4)(10.6,-0.4)
\psline[linewidth=0.04cm](9.2,-1.4)(10.2,-0.4)
\psline[linewidth=0.04cm](10.2,-0.4)(10.6,-0.4)
\psline[linewidth=0.04cm](10.6,-0.4)(10.6,-4.2)
\psline[linewidth=0.04cm](10.2,-0.8)(10.2,-3.6)
\psline[linewidth=0.04cm](10.6,-4.2)(10.2,-4.2)
\psline[linewidth=0.04cm](10.2,-4.2)(9.2,-3.0)
\psline[linewidth=0.04cm](10.6,-4.2)(9.6,-3.0)
\psline[linewidth=0.03cm,linestyle=dashed,dash=0.16cm 0.16cm](10.4,-0.8)(10.4,-4.0)
\psline[linewidth=0.03cm](9.6,-1.4)(9.6,-3.0)
\psline[linewidth=0.03cm](9.2,-1.4)(9.2,-3.0)
\end{pspicture} 
}
$$

An example starting with Complex Algebra

The basis consists of the real and imaginary units. We use complex multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.

Split-complex can be specified by Caley-Dickson parameter (q0 = -1)
\begin{axiom}
--q:=1  -- split-complex
q:=sp('i,[2])
QQ := ℂ(ℚ,'i,q);
\end{axiom}

Basis: Each B.i is a complex number
\begin{axiom}
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)
-- Multiplication table:
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real real(x/y),M)
-- The result is a nested list
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
-- structure constants form a tensor operator
Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*($/𝐝.k), i,1..dim), j,1..dim), k,1..dim)
arity Y
Y! := (I,!)/Y
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y!, i,1..dim), j,1..dim)
\end{axiom}

Multiplication of arbitrary quaternions $a$ and $b$
\begin{axiom}
a:=Σ(sb('a,[i])*𝐞.i, i,1..dim)
b:=Σ(sb('b,[i])*𝐞.i, i,1..dim)
(a,b)/Y!
\end{axiom}

Multiplication is Associative
\begin{axiom}
test(
  (  Y! J ) / _
  (   Y   ) = _
  (  I Y  ) / _
  (   Y!  ) )
\end{axiom}

A scalar product is denoted by the (2,0)-tensor
$U = \{ u_{ij} \}$
\begin{axiom}
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*($/𝐝.j), i,1..dim), j,1..dim)
arity U
\end{axiom}

Definition 1

  We say that the scalar product is *associative* if the tensor
  equation holds::

    Y   =   Y
     U     U

  In other words, if the (3,0)-tensor:

$$
\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){-}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture} 
}
$$

\begin{equation}
\Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \}
\end{equation}
(three-point function) is zero.

*How should we color this?*


Linear operators over a 2-dimensional vector space representing the algebra of complex numbers

We need the Axiom LinearOperator? library.

axiom
)library CARTEN ARITY CMONAL CPROP CLOP CALEY
CartesianTensor is now explicitly exposed in frame initial CartesianTensor will be automatically loaded when needed from /var/zope2/var/LatexWiki/CARTEN.NRLIB/CARTEN Arity is now explicitly exposed in frame initial Arity will be automatically loaded when needed from /var/zope2/var/LatexWiki/ARITY.NRLIB/ARITY ClosedMonoidal is now explicitly exposed in frame initial ClosedMonoidal will be automatically loaded when needed from /var/zope2/var/LatexWiki/CMONAL.NRLIB/CMONAL ClosedProp is now explicitly exposed in frame initial ClosedProp will be automatically loaded when needed from /var/zope2/var/LatexWiki/CPROP.NRLIB/CPROP ClosedLinearOperator is now explicitly exposed in frame initial ClosedLinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/CLOP.NRLIB/CLOP CaleyDickson is now explicitly exposed in frame initial CaleyDickson will be automatically loaded when needed from /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY

Use the following macros for convenient notation

axiom
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
Type: Void
axiom
-- list
macro Ξ(f,i,n)==[f for i in n]
Type: Void
axiom
-- subscript and superscripts
macro sb == subscript
Type: Void
axiom
macro sp == superscript
Type: Void

𝐋 is the domain of 2-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.

axiom
dim:=2

\label{eq1}2(1)
Type: PositiveInteger?
axiom
macro ℒ == List
Type: Void
axiom
macro ℂ == CaleyDickson
Type: Void
axiom
macro ℚ == Expression Integer
Type: Void
axiom
𝐋 := ClosedLinearOperator(OVAR ['1,'2], ℚ)

\label{eq2}\hbox{\axiomType{ClosedLinearOperator}\ } (\hbox{\axiomType{OrderedVariableList}\ } ([ 1, 2 ]) , \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Type
axiom
𝐞:ℒ 𝐋      := basisOut()

\label{eq3}\left[{|_{\  1}}, \:{|_{\  2}}\right](3)
Type: List(ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))
axiom
𝐝:ℒ 𝐋      := basisIn()

\label{eq4}\left[{|^{\  1}}, \:{|^{\  2}}\right](4)
Type: List(ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))
axiom
I:𝐋:=[1]   -- identity for composition

\label{eq5}{|_{\  1}^{\  1}}+{|_{\  2}^{\  2}}(5)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
X:𝐋:=[2,1] -- twist

\label{eq6}{|_{\  1 \  1}^{\  1 \  1}}+{|_{\  2 \  1}^{\  1 \  2}}+{|_{\  1 \  2}^{\  2 \  1}}+{|_{\  2 \  2}^{\  2 \  2}}(6)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
V:𝐋:=ev(1) -- evaluation

\label{eq7}{|^{\  1 \  1}}+{|^{\  2 \  2}}(7)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
Λ:𝐋:=co(1) -- co-evaluation

\label{eq8}{|_{\  1 \  1}}+{|_{\  2 \  2}}(8)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
!:𝐋:=[-1]  -- color change 1 -> 1*

\label{eq9}{|_{\ {1_{\ }^{<em>}}}^{\  1}}+{|_{\ {2_{\ }^{</em>}}}^{\  2}}(9)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
$:𝐋:=dagger ! -- 1* -> 1

\label{eq10}{|_{\  1}^{\ {1_{\ }^{<em>}}}}+{|_{\  2}^{\ {2_{\ }^{</em>}}}}(10)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
J:𝐋:=$/!

\label{eq11}{|_{\ {1_{\ }^{<em>}}}^{\ {1_{\ }^{</em>}}}}+{|_{\ {2_{\ }^{<em>}}}^{\ {2_{\ }^{</em>}}}}(11)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
test(!/$=I)

\label{eq12} \mbox{\rm true} (12)
Type: Boolean
axiom
equate(eq)==map((x,y)+->(x=y),ravel lhs eq, ravel rhs eq);
Type: Void

We want to be able to implement linear operators with two "colors" like the following:


\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-4.22)(14.015,4.22)
\psline[linewidth=0.04cm](11.6,2.4)(13.0,3.8)
\psline[linewidth=0.04cm](11.4,2.6)(13.0,4.2)
\psline[linewidth=0.04cm](13.0,4.2)(13.4,4.2)
\psline[linewidth=0.04cm](13.4,4.2)(13.4,0.4)
\psline[linewidth=0.04cm](13.0,4.2)(13.0,1.0)
\psline[linewidth=0.04cm](13.4,0.4)(13.0,0.4)
\psline[linewidth=0.04cm](13.0,0.4)(10.4,3.2)
\psline[linewidth=0.04cm](13.4,0.4)(10.8,3.2)
\psline[linewidth=0.04cm](10.4,1.6)(10.4,0.4)
\psline[linewidth=0.04cm](10.8,1.6)(10.8,0.4)
\psline[linewidth=0.04cm](10.4,3.2)(10.4,4.2)
\psline[linewidth=0.04cm](10.8,3.2)(10.8,4.2)
\psline[linewidth=0.04cm](10.8,1.6)(11.4,2.2)
\psline[linewidth=0.04cm](10.4,1.6)(11.2,2.4)
\psline[linewidth=0.04cm](10.4,0.4)(10.8,0.4)
\psline[linewidth=0.03cm](10.4,4.2)(10.8,4.2)
\psline[linewidth=0.03cm](6.8,4.2)(6.8,0.4)
\psline[linewidth=0.03cm](7.1850057,4.2)(7.1850057,0.41349542)
\psline[linewidth=0.03cm](6.8,0.41349542)(7.1850057,0.41349542)
\psline[linewidth=0.03cm](6.8,4.2)(7.2,4.2)
\usefont{T1}{ptm}{m}{n}
\rput(8.315937,2.335){\large \psframebox*[framesep=0, boxsep=false,fillcolor=white] {=}}
\psline[linewidth=0.03cm,linestyle=dashed,dash=0.16cm 0.16cm](13.2,4.2)(13.2,0.8)
\psline[linewidth=0.04cm](2.4,2.4)(1.0,3.8)
\psline[linewidth=0.04cm](2.6,2.6)(1.0,4.2)
\psline[linewidth=0.04cm](1.0,4.2)(0.6,4.2)
\psline[linewidth=0.04cm](0.6,4.2)(0.6,0.4)
\psline[linewidth=0.04cm](1.0,4.2)(1.0,1.0)
\psline[linewidth=0.04cm](0.6,0.4)(1.0,0.4)
\psline[linewidth=0.04cm](1.0,0.4)(3.6,3.2)
\psline[linewidth=0.04cm](0.6,0.4)(3.2,3.2)
\psline[linewidth=0.04cm](3.6,1.6)(3.6,0.4)
\psline[linewidth=0.04cm](3.2,1.6)(3.2,0.4)
\psline[linewidth=0.04cm](3.6,3.2)(3.6,4.2)
\psline[linewidth=0.04cm](3.2,3.2)(3.2,4.2)
\psline[linewidth=0.04cm](3.2,1.6)(2.6,2.2)
\psline[linewidth=0.04cm](3.6,1.6)(2.8,2.4)
\psline[linewidth=0.04cm](3.6,0.4)(3.2,0.4)
\psline[linewidth=0.03cm](3.6,4.2)(3.2,4.2)
\psline[linewidth=0.03cm,linestyle=dashed,dash=0.16cm 0.16cm](0.8,4.2)(0.8,0.8)
\usefont{T1}{ptm}{m}{n}
\rput(5.5159373,2.335){\large \psframebox*[framesep=0, boxsep=false,fillcolor=white] {=}}
\psline[linewidth=0.03cm,linestyle=dotted,dotsep=0.16cm](0.0,1.6)(14.0,1.6)
\psline[linewidth=0.03cm,linestyle=dotted,dotsep=0.16cm](0.0,3.2)(14.0,3.2)
\usefont{T1}{ptm}{m}{n}
\rput(6.9159374,-2.265){\large \psframebox*[framesep=0, boxsep=false,fillcolor=white] {=}}
\psline[linewidth=0.04cm](4.2,-1.4)(3.2,-0.4)
\psline[linewidth=0.04cm](4.6,-1.4)(3.6,-0.4)
\psline[linewidth=0.04cm](3.6,-0.4)(3.2,-0.4)
\psline[linewidth=0.04cm](3.2,-0.4)(3.2,-4.2)
\psline[linewidth=0.04cm](3.6,-0.8)(3.6,-3.6)
\psline[linewidth=0.04cm](3.2,-4.2)(3.6,-4.2)
\psline[linewidth=0.04cm](3.6,-4.2)(4.6,-3.0)
\psline[linewidth=0.04cm](3.2,-4.2)(4.2,-3.0)
\psline[linewidth=0.03cm,linestyle=dashed,dash=0.16cm 0.16cm](3.4,-0.8)(3.4,-4.0)
\psline[linewidth=0.03cm](4.2,-1.4)(4.2,-3.0)
\psline[linewidth=0.03cm](4.6,-1.4)(4.6,-3.0)
\psline[linewidth=0.04cm](9.6,-1.4)(10.6,-0.4)
\psline[linewidth=0.04cm](9.2,-1.4)(10.2,-0.4)
\psline[linewidth=0.04cm](10.2,-0.4)(10.6,-0.4)
\psline[linewidth=0.04cm](10.6,-0.4)(10.6,-4.2)
\psline[linewidth=0.04cm](10.2,-0.8)(10.2,-3.6)
\psline[linewidth=0.04cm](10.6,-4.2)(10.2,-4.2)
\psline[linewidth=0.04cm](10.2,-4.2)(9.2,-3.0)
\psline[linewidth=0.04cm](10.6,-4.2)(9.6,-3.0)
\psline[linewidth=0.03cm,linestyle=dashed,dash=0.16cm 0.16cm](10.4,-0.8)(10.4,-4.0)
\psline[linewidth=0.03cm](9.6,-1.4)(9.6,-3.0)
\psline[linewidth=0.03cm](9.2,-1.4)(9.2,-3.0)
\end{pspicture} 
}
 

An example starting with Complex Algebra

The basis consists of the real and imaginary units. We use complex multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.

Split-complex can be specified by Caley-Dickson parameter (q0 = -1)

axiom
--q:=1  -- split-complex
q:=sp('i,[2])

\label{eq13}i^{2}(13)
Type: Symbol
axiom
QQ := ℂ(ℚ,'i,q);
Type: Type

Basis: Each B.i is a complex number

axiom
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)

\label{eq14}\left[ 1, \: i \right](14)
Type: List(CaleyDickson?(Expression(Integer),i,*001i(2)))
axiom
-- Multiplication table:
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)

\label{eq15}\left[ 
\begin{array}{cc}
1 & i 
\
i & -{i^{2}}
(15)
Type: Matrix(CaleyDickson?(Expression(Integer),i,*001i(2)))
axiom
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real real(x/y),M)
Type: Void
axiom
-- The result is a nested list
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
axiom
Compiling function S with type CaleyDickson(Expression(Integer),i,
      *001i(2)) -> Matrix(Expression(Integer))

\label{eq16}\left[{\left[{\left[ 1, \: 0 \right]}, \:{\left[ 0, \: -{i^{2}}\right]}\right]}, \:{\left[{\left[ 0, \: 1 \right]}, \:{\left[ 1, \: 0 \right]}\right]}\right](16)
Type: List(List(List(Expression(Integer))))
axiom
-- structure constants form a tensor operator
Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*($/𝐝.k), i,1..dim), j,1..dim), k,1..dim)

\label{eq17}{|_{\  1}^{\  1 \ {1_{\ }^{<em>}}}}+{|_{\  2}^{\  1 \ {2_{\ }^{</em>}}}}+{|_{\  2}^{\  2 \ {1_{\ }^{<em>}}}}-{{i^{2}}\ {|_{\  1}^{\  2 \ {2_{\ }^{</em>}}}}}(17)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
arity Y

\label{eq18}{+ \  -}\over +(18)
Type: ClosedProp?(ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))
axiom
Y! := (I,!)/Y

\label{eq19}{|_{\  1}^{\  1 \  1}}+{|_{\  2}^{\  1 \  2}}+{|_{\  2}^{\  2 \  1}}-{{i^{2}}\ {|_{\  1}^{\  2 \  2}}}(19)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y!, i,1..dim), j,1..dim)

\label{eq20}\left[ 
\begin{array}{cc}
{|_{\  1}}&{|_{\  2}}
\
{|_{\  2}}& -{{i^{2}}\ {|_{\  1}}}
(20)
Type: Matrix(ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))

Multiplication of arbitrary quaternions a and b

axiom
a:=Σ(sb('a,[i])*𝐞.i, i,1..dim)

\label{eq21}{{a_{1}}\ {|_{\  1}}}+{{a_{2}}\ {|_{\  2}}}(21)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
b:=Σ(sb('b,[i])*𝐞.i, i,1..dim)

\label{eq22}{{b_{1}}\ {|_{\  1}}}+{{b_{2}}\ {|_{\  2}}}(22)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
(a,b)/Y!

\label{eq23}{{\left(-{{i^{2}}\ {a_{2}}\ {b_{2}}}+{{a_{1}}\ {b_{1}}}\right)}\ {|_{\  1}}}+{{\left({{a_{1}}\ {b_{2}}}+{{a_{2}}\ {b_{1}}}\right)}\ {|_{\  2}}}(23)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))

Multiplication is Associative

axiom
test(
  (  Y! J ) / _
  (   Y   ) = _
  (  I Y  ) / _
  (   Y!  ) )

\label{eq24} \mbox{\rm true} (24)
Type: Boolean

A scalar product is denoted by the (2,0)-tensor U = \{ u_{ij} \}

axiom
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*($/𝐝.j), i,1..dim), j,1..dim)

\label{eq25}{{u^{1, \: 1}}\ {|^{\  1 \ {1_{\ }^{<em>}}}}}+{{u^{1, \: 2}}\ {|^{\  1 \ {2_{\ }^{</em>}}}}}+{{u^{2, \: 1}}\ {|^{\  2 \ {1_{\ }^{<em>}}}}}+{{u^{2, \: 2}}\ {|^{\  2 \ {2_{\ }^{</em>}}}}}(25)
Type: ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer))
axiom
arity U

\label{eq26}{+ \  -}\over 0(26)
Type: ClosedProp?(ClosedLinearOperator?(OrderedVariableList?([1,2]),Expression(Integer)))

Definition 1

We say that the scalar product is associative if the tensor equation holds:

    Y   =   Y
     U     U

In other words, if the (3,0)-tensor:


\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){-}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture} 
}
 


\label{eq27}
\Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \}
(27)
(three-point function) is zero.

How should we color this?