|
|
last edited 13 years ago by Bill Page |
1 2 3 4 5 6 7 | ||
Editor: Bill Page
Time: 2011/06/03 18:56:05 GMT-7 |
||
Note: |
changed: -Now generate structure constants for Quaternion Algebra Now generate structure constants for Pauli Algebra added: Units \begin{axiom} e:=𝐞.1; i:=𝐞.2; j:=𝐞.3; k:=𝐞.4; ij:=𝐞.5; ik:=𝐞.6; jk:=𝐞.7; ijk:=𝐞.8; \end{axiom} Multiplication of arbitrary quaternions $a$ and $b$ \begin{axiom} a:=Σ(sb('a,[i])*𝐞.i, i,1..dim) b:=Σ(sb('b,[i])*𝐞.i, i,1..dim) (a*b)/Y \end{axiom} added: $U = \{ u_{ij} \}$ added: In other words, if the (3,0)-tensor: $$ \scalebox{1} % Change this value to rescale the drawing. { \begin{pspicture}(0,-0.92)(4.82,0.92) \psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9) \psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1) \psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1) \psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9) \psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9) \psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1) \psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1) \psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9) \usefont{T1}{ptm}{m}{n} \rput(3.4948437,0.205){-} \psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9) \psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1) \psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9) \psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9) \usefont{T1}{ptm}{m}{n} \rput(1.6948438,0.205){=} \end{pspicture} } $$ \begin{equation} \Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \} \end{equation} (three-point function) is zero. changed: -\end{axiom} determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ũ), j,1..dim), i,1..dim) \end{axiom} General Solution Frobenius Form (co-unit) \begin{axiom} d:=ε1*𝐝.1+εi*𝐝.2+εj*𝐝.3+εk*𝐝.4+εij*𝐝.5+εik*𝐝.6+εjk*𝐝.7+εijk*𝐝.8 Ų:= Y/d \end{axiom} In general the pairing is not symmetric! \begin{axiom} u1:=matrix Ξ(Ξ(retract((𝐞.i 𝐞.j)/Ų), i,1..dim), j,1..dim) --eigenvectors(u1::Matrix FRAC POLY INT) \end{axiom} changed: -Ů:=determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ũ), j,1..dim), i,1..dim) -factor(numer Ů)/factor(denom Ů) -\end{axiom} --Ů:=determinant u1 --factor(numer Ů)/factor(denom Ů) 1 \end{axiom} Cartan-Killing is a special case \begin{axiom} ck:=solve(equate(Ũ=Ų),[ε1,εi,εj,εk,εij,εik,εjk,εijk]).1 \end{axiom} Frobenius scalar product of "vector" quaternions $a$ and $b$ \begin{axiom} a:=sb('a,[1])*i+sb('a,[2])*j+sb('a,[3])*k b:=sb('b,[1])*i+sb('b,[2])*j+sb('b,[3])*k (a,a)/Ų (b,b)/Ų (a,b)/Ų \end{axiom} changed: - Co-scalar product (pairing) Co-scalar product changed: -mU:=inverse matrix Ξ(Ξ(retract((𝐞.i*𝐞.j)/Ũ), i,1..dim), j,1..dim) mU:=inverse matrix Ξ(Ξ(retract((𝐞.i*𝐞.j)/Ų), i,1..dim), j,1..dim); added: The common demoninator is $1/\sqrt{\mathring{U}}$ \begin{axiom} --squareFreePart factor denom Ů / squareFreePart factor numer Ů matrix Ξ(Ξ(numer retract(Ω/(𝐝.i*𝐝.j)), i,1..dim), j,1..dim) \end{axiom} changed: -d:𝐋:= - Ω / - Ũ O:𝐋:= Ω / Ų changed: - ( Ũ I ) = I ( Ų I ) = I changed: - ( I Ũ ) = I - -\end{axiom} ( I Ų ) = I \end{axiom} Cartan-Killing co-scalar \begin{axiom} eval(Ω,ck) \end{axiom} changed: -W:=(Y I) / Ũ; - -\end{axiom} - -Cartan-Killing co-multiplication -\begin{axiom} - -λ:= _ - ( I ΩX ) / _ - ( Y I ) ; W:= (Y I) / Ų; ( ΩX I ΩX ) / ( I W I ) \end{axiom} \begin{axiom} λ:= _ ( I ΩX ) / _ ( Y I ); changed: -Frobenius Condition (fork) -\begin{axiom} - -H := Y / λ; - -test - ( λ I ) / - ( I Y ) = H - -test - ( I λ ) / - ( Y I ) = H - -\end{axiom} - -The Cartan-Killing form makes H of the Frobenius condition idempotent -\begin{axiom} -test( H=H/H ) -\end{axiom} - -Handle -\begin{axiom} - -Φ := λ / Y; - -\end{axiom} - -The Cartan-Killing form makes Φ of the identity -\begin{axiom} -test( Φ=I ) -\end{axiom} - -Definition 5 - -Unit -\begin{axiom} - -e:=𝐞.1 Cartan-Killing co-multiplication \begin{axiom} eval(λ,ck) \end{axiom} Co-associativity \begin{axiom} test( ( λ ) / _ ( I λ ) = _ ( λ ) / _ ( λ I ) ) \end{axiom} \begin{axiom} changed: -Co-unit -\begin{axiom} - -d:= - ( e I ) / - Ũ -test - Y / - d = Ũ - -\end{axiom} - -Figure 12 - -\begin{axiom} - -ΩXΩ:= ΩX * Ω; -YXY:= Y * XY; -arity(ΩXΩ) -φφ := ΩXΩ / (I X I ) / YXY; - -φφ1:=map((x:ℚ):ℚ+->numer x,φφ) -φφ2:=denom(ravel(φφ).1) -test(φφ=(1/φφ2)*φφ1) -\end{axiom} -For Cartan-Killing this is just the co-scalar -\begin{axiom} -test(φφ=Ω) -test((e,e)/H=Ω) -\end{axiom} - -Bi-algebra conditions -\begin{axiom} -ΦΦ:= _ - ( λ λ ) / _ - ( I I X ) / _ - ( I X I ) / _ - ( YXY ) ; -test((e,e)/ΦΦ=φφ) -test(ΦΦ=H/H) -test(ΦΦ/(d,d)=Ũ) -test(H/(d,d)=Ũ) -\end{axiom} -
The Pauli Algebra Cl(3) Is Frobenius In Many WaysLinear operators over a 8-dimensional vector space representing Pauli algebra
Ref:
$S_3$-permuted Frobenius Algebras
Zbigniew Oziewicz (UNAM), Gregory Peter Wene (UTSA)
Frobenius algebras and 2D topological quantum field theories
Joachim Kock
We need the Axiom LinearOperator library. \begin{axiom} )library CARTEN ARITY CMONAL CPROP CLOP CALEY \end{axiom}
Use the following macros for convenient notation \begin{axiom} -- summation macro Σ(x,i,n)==reduce(+,[x for i in n]) -- list macro Ξ(f,i,n)==[f for i in n] -- subscript and superscripts macro sb == subscript macro sp == superscript \end{axiom}
𝐋 is the domain of 8-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients. \begin{axiom} dim:=8 macro ℒ == List macro ℂ == CaleyDickson macro ℚ == Expression Integer 𝐋 := ClosedLinearOperator(OVAR ['1,'i,'j,'k,'ij,'ik,'jk,'ijk], ℚ) 𝐞:ℒ 𝐋 := basisOut() 𝐝:ℒ 𝐋 := basisIn() I:𝐋:=[1] -- identity for composition X:𝐋:=[2,1] -- twist V:𝐋:=ev(1) -- evaluation Λ:𝐋:=co(1) -- co-evaluation equate(eq)==map((x,y)+->(x=y),ravel lhs eq, ravel rhs eq); \end{axiom}
Now generate structure constants for Pauli Algebra
The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.
The Pauli Algebra as Cl(3)
Basis: Each B.i is a Clifford number \begin{axiom} q0:=sp('i,[2]) q1:=sp('j,[2]) q2:=sp('k,[2]) QQ:=CliffordAlgebra(3,ℚ,matrix [[q0,0,0],[0,q1,0],[0,0,q2]]) B:ℒ QQ := [monomial(1,[]),monomial(1,[1]),monomial(1,[2]),monomial(1,[3]),monomial(1,[1,2]),monomial(1,[1,3]),monomial(1,[2,3]),monomial(1,[1,2,3])] M:Matrix QQ := matrix Ξ(Ξ(B.iB.j, i,1..dim), j,1..dim) S(y) == map(x +-> coefficient(recip(y)x,[]),M) ѕ :=map(S,B)::ℒ ℒ ℒ ℚ -- structure constants form a tensor operator Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim) matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim) XY := X/Y; \end{axiom}
Units \begin{axiom} e:=𝐞.1; i:=𝐞.2; j:=𝐞.3; k:=𝐞.4; ij:=𝐞.5; ik:=𝐞.6; jk:=𝐞.7; ijk:=𝐞.8; \end{axiom}
Multiplication of arbitrary quaternions $a$ and $b$ \begin{axiom} a:=Σ(sb('a,[i])*𝐞.i, i,1..dim) b:=Σ(sb('b,[i])*𝐞.i, i,1..dim) (a*b)/Y \end{axiom}
Multiplication is Associative \begin{axiom} test( ( I Y ) / ( Y ) = ( Y I ) / _ ( Y ) ) \end{axiom}
A scalar product is denoted by the (2,0)-tensor $U = \{ u_{ij} \}$ \begin{axiom} U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim) \end{axiom}
We say that the scalar product is associative if the tensor equation holds:
Y = Y U U
In other words, if the (3,0)-tensor: $$ \scalebox{1} % Change this value to rescale the drawing. { \begin{pspicture}(0,-0.92)(4.82,0.92) \psbezier[linewidth=0.04]?(2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9) \psline[linewidth=0.04cm]?(2.4,0.3)(2.4,-0.1) \psbezier[linewidth=0.04]?(2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1) \psline[linewidth=0.04cm]?(3.0,-0.1)(3.0,0.9) \psbezier[linewidth=0.04]?(4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9) \psline[linewidth=0.04cm]?(4.6,0.3)(4.6,-0.1) \psbezier[linewidth=0.04]?(4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1) \psline[linewidth=0.04cm]?(4.0,-0.1)(4.0,0.9) \usefont{T1}{ptm}{m}{n} \rput(3.4948437,0.205){-} \psline[linewidth=0.04cm]?(0.6,-0.7)(0.6,0.9) \psbezier[linewidth=0.04]?(0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1) \psline[linewidth=0.04cm]?(0.0,-0.1)(0.0,0.9) \psline[linewidth=0.04cm]?(1.2,-0.1)(1.2,0.9) \usefont{T1}{ptm}{m}{n} \rput(1.6948438,0.205){=} \end{pspicture} } $$
\begin{equation} \label{eq1} \Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \} \end{equation} (three-point function) is zero.
Using the LinearOperator? domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.
\begin{axiom}
ω:𝐋 := ( Y I ) / U - ( I Y ) / U;
\end{axiom}
An algebra with a non-degenerate associative scalar product is called a [Frobenius Algebra]?.
The Cartan-Killing Trace \begin{axiom}
Ú:= ( Y Λ ) / ( Y I ) / V Ù:= ( Λ Y ) / ( I Y ) / V
test(Ù=Ú)
\end{axiom} forms a non-degenerate associative scalar product for Y \begin{axiom} Ũ := Ù test ( Y I ) / Ũ = ( I Y ) / Ũ determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ũ), j,1..dim), i,1..dim) \end{axiom}
General Solution
Frobenius Form (co-unit) \begin{axiom} d:=ε1*𝐝.1+εi*𝐝.2+εj*𝐝.3+εk*𝐝.4+εij*𝐝.5+εik*𝐝.6+εjk*𝐝.7+εijk*𝐝.8 Ų:= Y/d \end{axiom}
In general the pairing is not symmetric! \begin{axiom} u1:=matrix Ξ(Ξ(retract((𝐞.i 𝐞.j)/Ų), i,1..dim), j,1..dim) --eigenvectors(u1::Matrix FRAC POLY INT) \end{axiom}
The scalar product must be non-degenerate: \begin{axiom} --Ů:=determinant u1 --factor(numer Ů)/factor(denom Ů) 1 \end{axiom}
Cartan-Killing is a special case \begin{axiom} ck:=solve(equate(Ũ=Ų),[ε1,εi,εj,εk,εij,εik,εjk,εijk]?).1 \end{axiom}
Frobenius scalar product of "vector" quaternions $a$ and $b$ \begin{axiom} a:=sb('a,[1]?)*i+sb('a,[2]?)*j+sb('a,[3]?)*k b:=sb('b,[1]?)*i+sb('b,[2]?)*j+sb('b,[3]?)*k (a,a)/Ų (b,b)/Ų (a,b)/Ų \end{axiom}
Co-scalar product
Solve the [Snake Relation]? as a system of linear equations. \begin{axiom} mU:=inverse matrix Ξ(Ξ(retract((𝐞.i*𝐞.j)/Ų), i,1..dim), j,1..dim); Ω:=Σ(Σ(mU(i,j)*(𝐞.i*𝐞.j), i,1..dim), j,1..dim); ΩX:=Ω/X; --matrix Ξ(Ξ(Ω/(𝐝.i*𝐝.j), i,1..dim), j,1..dim) \end{axiom}
The common demoninator is $1/\sqrt{\mathring{U}}$ \begin{axiom} --squareFreePart factor denom Ů / squareFreePart factor numer Ů matrix Ξ(Ξ(numer retract(Ω/(𝐝.i*𝐝.j)), i,1..dim), j,1..dim) \end{axiom}
Check "dimension" and the snake relations. \begin{axiom}
O:𝐋:= Ω / Ų
test ( I ΩX ) / ( Ų I ) = I
test ( ΩX I ) / ( I Ų ) = I
\end{axiom}
Cartan-Killing co-scalar \begin{axiom} eval(Ω,ck) \end{axiom}
Co-algebra
Compute the "three-point" function and use it to define co-multiplication. \begin{axiom}
( ΩX I ΩX ) / ( I W I )
\end{axiom}
\begin{axiom}
λ:= _ ( I ΩX ) / _ ( Y I );
test ( ΩX I ) / ( I Y ) = λ
\end{axiom}
Cartan-Killing co-multiplication \begin{axiom} eval(λ,ck) \end{axiom}
Co-associativity \begin{axiom} test( ( λ ) / _ ( I λ ) = _ ( λ ) / _ ( λ I ) ) \end{axiom}
\begin{axiom}
test e / λ = ΩX
\end{axiom}
Error: export AXIOM=/usr/local/lib/fricas/target/x86_64-unknown-linux; export ALDORROOT=/usr/local/aldor/linux/1.1.0; export PATH=$ALDORROOT/bin:$PATH; export HOME=/var/zope2/var/LatexWiki; ulimit -t 600; export LD_LIBRARY_PATH=/usr/local/lib/fricas/target/x86_64-unknown-linux/lib; LANG=en_US.UTF-8 $AXIOM/bin/AXIOMsys < /var/zope2/var/LatexWiki/7197492308318484242-25px.axm KilledChecking for foreign routines AXIOM="/usr/local/lib/fricas/target/x86_64-unknown-linux" spad-lib="/usr/local/lib/fricas/target/x86_64-unknown-linux/lib/libspad.so" foreign routines found openServer result -2 FriCAS (AXIOM fork) Computer Algebra System Version: FriCAS 2010-12-08 Timestamp: Tuesday April 5, 2011 at 13:07:45 ----------------------------------------------------------------------------- Issue )copyright to view copyright notices. Issue )summary for a summary of useful system commands. Issue )quit to leave FriCAS and return to shell. -----------------------------------------------------------------------------
(1) -> (1) -> (1) -> (1) -> (1) -> )library CARTEN ARITY CMONAL CPROP CLOP CALEY
CartesianTensor is now explicitly exposed in frame initial CartesianTensor will be automatically loaded when needed from /var/zope2/var/LatexWiki/CARTEN.NRLIB/CARTEN Arity is now explicitly exposed in frame initial Arity will be automatically loaded when needed from /var/zope2/var/LatexWiki/ARITY.NRLIB/ARITY ClosedMonoidal is now explicitly exposed in frame initial ClosedMonoidal will be automatically loaded when needed from /var/zope2/var/LatexWiki/CMONAL.NRLIB/CMONAL ClosedProp is now explicitly exposed in frame initial ClosedProp will be automatically loaded when needed from /var/zope2/var/LatexWiki/CPROP.NRLIB/CPROP ClosedLinearOperator is now explicitly exposed in frame initial ClosedLinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/CLOP.NRLIB/CLOP CaleyDickson is now explicitly exposed in frame initial CaleyDickson will be automatically loaded when needed from /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY (1) -> -- summation macro Σ(x,i,n)==reduce(+,[x for i in n])
Type: Void macro sp == superscript
Type: Void (5) -> dim:=8
$$ 8 \leqno(5) $$
Type: PositiveInteger macro ℒ == List
Type: Void macro ℂ == CaleyDickson
Type: Void macro ℚ == Expression Integer
Type: Void 𝐋 := ClosedLinearOperator(OVAR ['1,'i,'j,'k,'ij,'ik,'jk,'ijk], ℚ)
$$ ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) \leqno(9) $$
Type: Type 𝐞:ℒ 𝐋 := basisOut()
$$ \left[ {| \sb {{ \ 1}}}, \: {| \sb {{ \ i}}}, \: {| \sb {{ \ j}}}, \: {| \sb {{ \ k}}}, \: {| \sb {{ \ ij}}}, \: {| \sb {{ \ ik}}}, \: {| \sb {{ \ jk}}}, \: {| \sb {{ \ ijk}}} \right] \leqno(10) $$
Type: List(ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer))) 𝐝:ℒ 𝐋 := basisIn()
$$ \left[ {| \sp {{ \ 1}}}, \: {| \sp {{ \ i}}}, \: {| \sp {{ \ j}}}, \: {| \sp {{ \ k}}}, \: {| \sp {{ \ ij}}}, \: {| \sp {{ \ ik}}}, \: {| \sp {{ \ jk}}}, \: {| \sp {{ \ ijk}}} \right] \leqno(11) $$
Type: List(ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer))) I:𝐋:=[1] -- identity for composition
$$ {| \sb {{ \ 1}} \sp {{ \ 1}}}+{| \sb {{ \ i}} \sp {{ \ i}}}+{| \sb {{ \ j}} \sp {{ \ j}}}+{| \sb {{ \ k}} \sp {{ \ k}}}+{| \sb {{ \ ij}} \sp {{ \ ij}}}+{| \sb {{ \ ik}} \sp {{ \ ik}}}+{| \sb {{ \ jk}} \sp {{ \ jk}}}+{| \sb {{ \ ijk}} \sp {{ \ ijk}}} \leqno(12) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) X:𝐋:=[2,1] -- twist
$$ {| \sb {{ \ 1 \ 1}} \sp {{ \ 1 \ 1}}}+{| \sb {{ \ i \ 1}} \sp {{ \ 1 \ i}}}+{| \sb {{ \ j \ 1}} \sp {{ \ 1 \ j}}}+{| \sb {{ \ k \ 1}} \sp {{ \ 1 \ k}}}+{| \sb {{ \ ij \ 1}} \sp {{ \ 1 \ ij}}}+{| \sb {{ \ ik \ 1}} \sp {{ \ 1 \ ik}}}+{| \sb {{ \ jk \ 1}} \sp {{ \ 1 \ jk}}}+{| \sb {{ \ ijk \ 1}} \sp {{ \ 1 \ ijk}}}+{| \sb {{ \ 1 \ i}} \sp {{ \ i \ 1}}}+{| \sb {{ \ i \ i}} \sp {{ \ i \ i}}}+{| \sb {{ \ j \ i}} \sp {{ \ i \ j}}}+{| \sb {{ \ k \ i}} \sp {{ \ i \ k}}}+{| \sb {{ \ ij \ i}} \sp {{ \ i \ ij}}}+{| \sb {{ \ ik \ i}} \sp {{ \ i \ ik}}}+{| \sb {{ \ jk \ i}} \sp {{ \ i \ jk}}}+{| \sb {{ \ ijk \ i}} \sp {{ \ i \ ijk}}}+{| \sb {{ \ 1 \ j}} \sp {{ \ j \ 1}}}+{| \sb {{ \ i \ j}} \sp {{ \ j \ i}}}+{| \sb {{ \ j \ j}} \sp {{ \ j \ j}}}+{| \sb {{ \ k \ j}} \sp {{ \ j \ k}}}+{| \sb {{ \ ij \ j}} \sp {{ \ j \ ij}}}+{| \sb {{ \ ik \ j}} \sp {{ \ j \ ik}}}+{| \sb {{ \ jk \ j}} \sp {{ \ j \ jk}}}+{| \sb {{ \ ijk \ j}} \sp {{ \ j \ ijk}}}+{| \sb {{ \ 1 \ k}} \sp {{ \ k \ 1}}}+{| \sb {{ \ i \ k}} \sp {{ \ k \ i}}}+{| \sb {{ \ j \ k}} \sp {{ \ k \ j}}}+{| \sb {{ \ k \ k}} \sp {{ \ k \ k}}}+{| \sb {{ \ ij \ k}} \sp {{ \ k \ ij}}}+{| \sb {{ \ ik \ k}} \sp {{ \ k \ ik}}}+{| \sb {{ \ jk \ k}} \sp {{ \ k \ jk}}}+{| \sb {{ \ ijk \ k}} \sp {{ \ k \ ijk}}}+{| \sb {{ \ 1 \ ij}} \sp {{ \ ij \ 1}}}+{| \sb {{ \ i \ ij}} \sp {{ \ ij \ i}}}+{| \sb {{ \ j \ ij}} \sp {{ \ ij \ j}}}+{| \sb {{ \ k \ ij}} \sp {{ \ ij \ k}}}+{| \sb {{ \ ij \ ij}} \sp {{ \ ij \ ij}}}+{| \sb {{ \ ik \ ij}} \sp {{ \ ij \ ik}}}+{| \sb {{ \ jk \ ij}} \sp {{ \ ij \ jk}}}+{| \sb {{ \ ijk \ ij}} \sp {{ \ ij \ ijk}}}+{| \sb {{ \ 1 \ ik}} \sp {{ \ ik \ 1}}}+{| \sb {{ \ i \ ik}} \sp {{ \ ik \ i}}}+{| \sb {{ \ j \ ik}} \sp {{ \ ik \ j}}}+{| \sb {{ \ k \ ik}} \sp {{ \ ik \ k}}}+{| \sb {{ \ ij \ ik}} \sp {{ \ ik \ ij}}}+{| \sb {{ \ ik \ ik}} \sp {{ \ ik \ ik}}}+{| \sb {{ \ jk \ ik}} \sp {{ \ ik \ jk}}}+{| \sb {{ \ ijk \ ik}} \sp {{ \ ik \ ijk}}}+{| \sb {{ \ 1 \ jk}} \sp {{ \ jk \ 1}}}+{| \sb {{ \ i \ jk}} \sp {{ \ jk \ i}}}+{| \sb {{ \ j \ jk}} \sp {{ \ jk \ j}}}+{| \sb {{ \ k \ jk}} \sp {{ \ jk \ k}}}+{| \sb {{ \ ij \ jk}} \sp {{ \ jk \ ij}}}+{| \sb {{ \ ik \ jk}} \sp {{ \ jk \ ik}}}+{| \sb {{ \ jk \ jk}} \sp {{ \ jk \ jk}}}+{| \sb {{ \ ijk \ jk}} \sp {{ \ jk \ ijk}}}+{| \sb {{ \ 1 \ ijk}} \sp {{ \ ijk \ 1}}}+{| \sb {{ \ i \ ijk}} \sp {{ \ ijk \ i}}}+{| \sb {{ \ j \ ijk}} \sp {{ \ ijk \ j}}}+{| \sb {{ \ k \ ijk}} \sp {{ \ ijk \ k}}}+{| \sb {{ \ ij \ ijk}} \sp {{ \ ijk \ ij}}}+{| \sb {{ \ ik \ ijk}} \sp {{ \ ijk \ ik}}}+{| \sb {{ \ jk \ ijk}} \sp {{ \ ijk \ jk}}}+{| \sb {{ \ ijk \ ijk}} \sp {{ \ ijk \ ijk}}} \leqno(13) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) V:𝐋:=ev(1) -- evaluation
$$ {| \sp {{ \ 1 \ 1}}}+{| \sp {{ \ i \ i}}}+{| \sp {{ \ j \ j}}}+{| \sp {{ \ k \ k}}}+{| \sp {{ \ ij \ ij}}}+{| \sp {{ \ ik \ ik}}}+{| \sp {{ \ jk \ jk}}}+{| \sp {{ \ ijk \ ijk}}} \leqno(14) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) Λ:𝐋:=co(1) -- co-evaluation
$$ {| \sb {{ \ 1 \ 1}}}+{| \sb {{ \ i \ i}}}+{| \sb {{ \ j \ j}}}+{| \sb {{ \ k \ k}}}+{| \sb {{ \ ij \ ij}}}+{| \sb {{ \ ik \ ik}}}+{| \sb {{ \ jk \ jk}}}+{| \sb {{ \ ijk \ ijk}}} \leqno(15) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) equate(eq)==map((x,y)+->(x=y),ravel lhs eq, ravel rhs eq);
Type: Void (17) -> q0:=sp('i,[2])
$$ i \sp {2} \leqno(17) $$
Type: Symbol q1:=sp('j,[2])
$$ j \sp {2} \leqno(18) $$
Type: Symbol q2:=sp('k,[2])
$$ k \sp {2} \leqno(19) $$
Type: Symbol QQ:=CliffordAlgebra(3,ℚ,matrix [[q0,0,0],[0,q1,0],[0,0,q2]])
$$ CliffordAlgebra(3,Expression(Integer),[[*001i(2),0,0],[0,*001j(2),0],[0,0,*001k(2)]]) \leqno(20) $$
Type: Type B:ℒ QQ := [monomial(1,[]),monomial(1,[1]),monomial(1,[2]),monomial(1,[3]),monomial(1,[1,2]),monomial(1,[1,3]),monomial(1,[2,3]),monomial(1,[1,2,3])]
$$ \left[ 1, \: {e \sb {1}}, \: {e \sb {2}}, \: {e \sb {3}}, \: {{e \sb {1}} \ {e \sb {2}}}, \: {{e \sb {1}} \ {e \sb {3}}}, \: {{e \sb {2}} \ {e \sb {3}}}, \: {{e \sb {1}} \ {e \sb {2}} \ {e \sb {3}}} \right] \leqno(21) $$
Type: List(CliffordAlgebra(3,Expression(Integer),[[*001i(2),0,0],[0,*001j(2),0],[0,0,*001k(2)]])) M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)
$$ \left[ \begin{array}{cccccccc} 1 & {e \sb {1}} & {e \sb {2}} & {e \sb {3}} & {{e \sb {1}} \ {e \sb {2}}} & {{e \sb {1}} \ {e \sb {3}}} & {{e \sb {2}} \ {e \sb {3}}} & {{e \sb {1}} \ {e \sb {2}} \ {e \sb {3}}} \ {e \sb {1}} & {i \sp {2}} & -{{e \sb {1}} \ {e \sb {2}}} & -{{e \sb {1}} \ {e \sb {3}}} & -{{i \sp {2}} \ {e \sb {2}}} & -{{i \sp {2}} \ {e \sb {3}}} & {{e \sb {1}} \ {e \sb {2}} \ {e \sb {3}}} & {{i \sp {2}} \ {e \sb {2}} \ {e \sb {3}}} \ {e \sb {2}} & {{e \sb {1}} \ {e \sb {2}}} & {j \sp {2}} & -{{e \sb {2}} \ {e \sb {3}}} & {{j \sp {2}} \ {e \sb {1}}} & -{{e \sb {1}} \ {e \sb {2}} \ {e \sb {3}}} & -{{j \sp {2}} \ {e \sb {3}}} & -{{j \sp {2}} \ {e \sb {1}} \ {e \sb {3}}} \ {e \sb {3}} & {{e \sb {1}} \ {e \sb {3}}} & {{e \sb {2}} \ {e \sb {3}}} & {k \sp {2}} & {{e \sb {1}} \ {e \sb {2}} \ {e \sb {3}}} & {{k \sp {2}} \ {e \sb {1}}} & {{k \sp {2}} \ {e \sb {2}}} & {{k \sp {2}} \ {e \sb {1}} \ {e \sb {2}}} \ {{e \sb {1}} \ {e \sb {2}}} & {{i \sp {2}} \ {e \sb {2}}} & -{{j \sp {2}} \ {e \sb {1}}} & {{e \sb {1}} \ {e \sb {2}} \ {e \sb {3}}} & -{{i \sp {2}} \ {j \sp {2}}} & {{i \sp {2}} \ {e \sb {2}} \ {e \sb {3}}} & -{{j \sp {2}} \ {e \sb {1}} \ {e \sb {3}}} & -{{i \sp {2}} \ {j \sp {2}} \ {e \sb {3}}} \ {{e \sb {1}} \ {e \sb {3}}} & {{i \sp {2}} \ {e \sb {3}}} & -{{e \sb {1}} \ {e \sb {2}} \ {e \sb {3}}} & -{{k \sp {2}} \ {e \sb {1}}} & -{{i \sp {2}} \ {e \sb {2}} \ {e \sb {3}}} & -{{i \sp {2}} \ {k \sp {2}}} & {{k \sp {2}} \ {e \sb {1}} \ {e \sb {2}}} & {{i \sp {2}} \ {k \sp {2}} \ {e \sb {2}}} \ {{e \sb {2}} \ {e \sb {3}}} & {{e \sb {1}} \ {e \sb {2}} \ {e \sb {3}}} & {{j \sp {2}} \ {e \sb {3}}} & -{{k \sp {2}} \ {e \sb {2}}} & {{j \sp {2}} \ {e \sb {1}} \ {e \sb {3}}} & -{{k \sp {2}} \ {e \sb {1}} \ {e \sb {2}}} & -{{j \sp {2}} \ {k \sp {2}}} & -{{j \sp {2}} \ {k \sp {2}} \ {e \sb {1}}} \ {{e \sb {1}} \ {e \sb {2}} \ {e \sb {3}}} & {{i \sp {2}} \ {e \sb {2}} \ {e \sb {3}}} & -{{j \sp {2}} \ {e \sb {1}} \ {e \sb {3}}} & {{k \sp {2}} \ {e \sb {1}} \ {e \sb {2}}} & -{{i \sp {2}} \ {j \sp {2}} \ {e \sb {3}}} & {{i \sp {2}} \ {k \sp {2}} \ {e \sb {2}}} & -{{j \sp {2}} \ {k \sp {2}} \ {e \sb {1}}} & -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}}} \end{array} \right] \leqno(22) $$
Type: Matrix(CliffordAlgebra(3,Expression(Integer),[[*001i(2),0,0],[0,*001j(2),0],[0,0,001k(2)]])) S(y) == map(x +-> coefficient(recip(y)x,[]),M)
Type: Void ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
Compiling function S with type CliffordAlgebra(3,Expression(Integer) ,[[*001i(2),0,0],[0,*001j(2),0],[0,0,*001k(2)]]) -> Matrix( Expression(Integer))
$$ \left[ {\left[ {\left[ 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: {i \sp {2}}, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: {j \sp {2}}, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: {k \sp {2}}, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: -{{i \sp {2}} \ {j \sp {2}}}, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: -{{i \sp {2}} \ {k \sp {2}}}, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: -{{j \sp {2}} \ {k \sp {2}}}, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}}} \right]} \right]}, \: {\left[ {\left[ 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: {j \sp {2}}, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: {k \sp {2}}, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: -{j \sp {2}}, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: -{k \sp {2}}, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: -{{j \sp {2}} \ {k \sp {2}}} \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: -{{j \sp {2}} \ {k \sp {2}}}, \: 0 \right]} \right]}, \: {\left[ {\left[ 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: -{i \sp {2}}, \: 0, \: 0, \: 0 \right]}, \: {\left[ 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: {k \sp {2}}, \: 0 \right]}, \: {\left[ 0, \: {i \sp {2}}, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: {{i \sp {2}} \ {k \sp {2}}} \right]}, \: {\left[ 0, \: 0, \: 0, \: -{k \sp {2}}, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: {{i \sp {2}} \ {k \sp {2}}}, \: 0, \: 0 \right]} \right]}, \: {\left[ {\left[ 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: -{i \sp {2}}, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: -{j \sp {2}}, \: 0 \right]}, \: {\left[ 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: -{{i \sp {2}} \ {j \sp {2}}} \right]}, \: {\left[ 0, \: {i \sp {2}}, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: {j \sp {2}}, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: -{{i \sp {2}} \ {j \sp {2}}}, \: 0, \: 0, \: 0 \right]} \right]}, \: {\left[ {\left[ 0, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: -1, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: {k \sp {2}} \right]}, \: {\left[ 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: {k \sp {2}}, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: -{k \sp {2}}, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: {k \sp {2}}, \: 0, \: 0, \: 0, \: 0 \right]} \right]}, \: {\left[ {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: -1, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: -{j \sp {2}} \right]}, \: {\left[ 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: -{j \sp {2}}, \: 0 \right]}, \: {\left[ 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: {j \sp {2}}, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: -{j \sp {2}}, \: 0, \: 0, \: 0, \: 0, \: 0 \right]} \right]}, \: {\left[ {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 1, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: {i \sp {2}} \right]}, \: {\left[ 0, \: 0, \: 0, \: -1, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: {i \sp {2}}, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: -{i \sp {2}}, \: 0, \: 0, \: 0 \right]}, \: {\left[ 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: {i \sp {2}}, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]} \right]}, \: {\left[ {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 1 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 1, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 0, \: -1, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 0, \: -1, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 0, \: 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: {\left[ 1, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]} \right]} \right] \leqno(24) $$
$$ {| \sb {{ \ 1}} \sp {{ \ 1 \ 1}}}+{| \sb {{ \ i}} \sp {{ \ 1 \ i}}}+{| \sb {{ \ j}} \sp {{ \ 1 \ j}}}+{| \sb {{ \ k}} \sp {{ \ 1 \ k}}}+{| \sb {{ \ ij}} \sp {{ \ 1 \ ij}}}+{| \sb {{ \ ik}} \sp {{ \ 1 \ ik}}}+{| \sb {{ \ jk}} \sp {{ \ 1 \ jk}}}+{| \sb {{ \ ijk}} \sp {{ \ 1 \ ijk}}}+{| \sb {{ \ i}} \sp {{ \ i \ 1}}}+{{i \sp {2}} \ {| \sb {{ \ 1}} \sp {{ \ i \ i}}}}+{| \sb {{ \ ij}} \sp {{ \ i \ j}}}+{| \sb {{ \ ik}} \sp {{ \ i \ k}}}+{{i \sp {2}} \ {| \sb {{ \ j}} \sp {{ \ i \ ij}}}}+{{i \sp {2}} \ {| \sb {{ \ k}} \sp {{ \ i \ ik}}}}+{| \sb {{ \ ijk}} \sp {{ \ i \ jk}}}+{{i \sp {2}} \ {| \sb {{ \ jk}} \sp {{ \ i \ ijk}}}}+{| \sb {{ \ j}} \sp {{ \ j \ 1}}} -{| \sb {{ \ ij}} \sp {{ \ j \ i}}}+{{j \sp {2}} \ {| \sb {{ \ 1}} \sp {{ \ j \ j}}}}+{| \sb {{ \ jk}} \sp {{ \ j \ k}}} -{{j \sp {2}} \ {| \sb {{ \ i}} \sp {{ \ j \ ij}}}} -{| \sb {{ \ ijk}} \sp {{ \ j \ ik}}}+{{j \sp {2}} \ {| \sb {{ \ k}} \sp {{ \ j \ jk}}}} -{{j \sp {2}} \ {| \sb {{ \ ik}} \sp {{ \ j \ ijk}}}}+{| \sb {{ \ k}} \sp {{ \ k \ 1}}} -{| \sb {{ \ ik}} \sp {{ \ k \ i}}} -{| \sb {{ \ jk}} \sp {{ \ k \ j}}}+{{k \sp {2}} \ {| \sb {{ \ 1}} \sp {{ \ k \ k}}}}+{| \sb {{ \ ijk}} \sp {{ \ k \ ij}}} -{{k \sp {2}} \ {| \sb {{ \ i}} \sp {{ \ k \ ik}}}} -{{k \sp {2}} \ {| \sb {{ \ j}} \sp {{ \ k \ jk}}}}+{{k \sp {2}} \ {| \sb {{ \ ij}} \sp {{ \ k \ ijk}}}}+{| \sb {{ \ ij}} \sp {{ \ ij \ 1}}} -{{i \sp {2}} \ {| \sb {{ \ j}} \sp {{ \ ij \ i}}}}+{{j \sp {2}} \ {| \sb {{ \ i}} \sp {{ \ ij \ j}}}}+{| \sb {{ \ ijk}} \sp {{ \ ij \ k}}} -{{i \sp {2}} \ {j \sp {2}} \ {| \sb {{ \ 1}} \sp {{ \ ij \ ij}}}} -{{i \sp {2}} \ {| \sb {{ \ jk}} \sp {{ \ ij \ ik}}}}+{{j \sp {2}} \ {| \sb {{ \ ik}} \sp {{ \ ij \ jk}}}} -{{i \sp {2}} \ {j \sp {2}} \ {| \sb {{ \ k}} \sp {{ \ ij \ ijk}}}}+{| \sb {{ \ ik}} \sp {{ \ ik \ 1}}} -{{i \sp {2}} \ {| \sb {{ \ k}} \sp {{ \ ik \ i}}}} -{| \sb {{ \ ijk}} \sp {{ \ ik \ j}}}+{{k \sp {2}} \ {| \sb {{ \ i}} \sp {{ \ ik \ k}}}}+{{i \sp {2}} \ {| \sb {{ \ jk}} \sp {{ \ ik \ ij}}}} -{{i \sp {2}} \ {k \sp {2}} \ {| \sb {{ \ 1}} \sp {{ \ ik \ ik}}}} -{{k \sp {2}} \ {| \sb {{ \ ij}} \sp {{ \ ik \ jk}}}}+{{i \sp {2}} \ {k \sp {2}} \ {| \sb {{ \ j}} \sp {{ \ ik \ ijk}}}}+{| \sb {{ \ jk}} \sp {{ \ jk \ 1}}}+{| \sb {{ \ ijk}} \sp {{ \ jk \ i}}} -{{j \sp {2}} \ {| \sb {{ \ k}} \sp {{ \ jk \ j}}}}+{{k \sp {2}} \ {| \sb {{ \ j}} \sp {{ \ jk \ k}}}} -{{j \sp {2}} \ {| \sb {{ \ ik}} \sp {{ \ jk \ ij}}}}+{{k \sp {2}} \ {| \sb {{ \ ij}} \sp {{ \ jk \ ik}}}} -{{j \sp {2}} \ {k \sp {2}} \ {| \sb {{ \ 1}} \sp {{ \ jk \ jk}}}} -{{j \sp {2}} \ {k \sp {2}} \ {| \sb {{ \ i}} \sp {{ \ jk \ ijk}}}}+{| \sb {{ \ ijk}} \sp {{ \ ijk \ 1}}}+{{i \sp {2}} \ {| \sb {{ \ jk}} \sp {{ \ ijk \ i}}}} -{{j \sp {2}} \ {| \sb {{ \ ik}} \sp {{ \ ijk \ j}}}}+{{k \sp {2}} \ {| \sb {{ \ ij}} \sp {{ \ ijk \ k}}}} -{{i \sp {2}} \ {j \sp {2}} \ {| \sb {{ \ k}} \sp {{ \ ijk \ ij}}}}+{{i \sp {2}} \ {k \sp {2}} \ {| \sb {{ \ j}} \sp {{ \ ijk \ ik}}}} -{{j \sp {2}} \ {k \sp {2}} \ {| \sb {{ \ i}} \sp {{ \ ijk \ jk}}}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {| \sb {{ \ 1}} \sp {{ \ ijk \ ijk}}}} \leqno(25) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)
$$ \left[ \begin{array}{cccccccc} {| \sb {{ \ 1}}} & {| \sb {{ \ i}}} & {| \sb {{ \ j}}} & {| \sb {{ \ k}}} & {| \sb {{ \ ij}}} & {| \sb {{ \ ik}}} & {| \sb {{ \ jk}}} & {| \sb {{ \ ijk}}} \ {| \sb {{ \ i}}} & {{i \sp {2}} \ {| \sb {{ \ 1}}}} & -{| \sb {{ \ ij}}} & -{| \sb {{ \ ik}}} & -{{i \sp {2}} \ {| \sb {{ \ j}}}} & -{{i \sp {2}} \ {| \sb {{ \ k}}}} & {| \sb {{ \ ijk}}} & {{i \sp {2}} \ {| \sb {{ \ jk}}}} \ {| \sb {{ \ j}}} & {| \sb {{ \ ij}}} & {{j \sp {2}} \ {| \sb {{ \ 1}}}} & -{| \sb {{ \ jk}}} & {{j \sp {2}} \ {| \sb {{ \ i}}}} & -{| \sb {{ \ ijk}}} & -{{j \sp {2}} \ {| \sb {{ \ k}}}} & -{{j \sp {2}} \ {| \sb {{ \ ik}}}} \ {| \sb {{ \ k}}} & {| \sb {{ \ ik}}} & {| \sb {{ \ jk}}} & {{k \sp {2}} \ {| \sb {{ \ 1}}}} & {| \sb {{ \ ijk}}} & {{k \sp {2}} \ {| \sb {{ \ i}}}} & {{k \sp {2}} \ {| \sb {{ \ j}}}} & {{k \sp {2}} \ {| \sb {{ \ ij}}}} \ {| \sb {{ \ ij}}} & {{i \sp {2}} \ {| \sb {{ \ j}}}} & -{{j \sp {2}} \ {| \sb {{ \ i}}}} & {| \sb {{ \ ijk}}} & -{{i \sp {2}} \ {j \sp {2}} \ {| \sb {{ \ 1}}}} & {{i \sp {2}} \ {| \sb {{ \ jk}}}} & -{{j \sp {2}} \ {| \sb {{ \ ik}}}} & -{{i \sp {2}} \ {j \sp {2}} \ {| \sb {{ \ k}}}} \ {| \sb {{ \ ik}}} & {{i \sp {2}} \ {| \sb {{ \ k}}}} & -{| \sb {{ \ ijk}}} & -{{k \sp {2}} \ {| \sb {{ \ i}}}} & -{{i \sp {2}} \ {| \sb {{ \ jk}}}} & -{{i \sp {2}} \ {k \sp {2}} \ {| \sb {{ \ 1}}}} & {{k \sp {2}} \ {| \sb {{ \ ij}}}} & {{i \sp {2}} \ {k \sp {2}} \ {| \sb {{ \ j}}}} \ {| \sb {{ \ jk}}} & {| \sb {{ \ ijk}}} & {{j \sp {2}} \ {| \sb {{ \ k}}}} & -{{k \sp {2}} \ {| \sb {{ \ j}}}} & {{j \sp {2}} \ {| \sb {{ \ ik}}}} & -{{k \sp {2}} \ {| \sb {{ \ ij}}}} & -{{j \sp {2}} \ {k \sp {2}} \ {| \sb {{ \ 1}}}} & -{{j \sp {2}} \ {k \sp {2}} \ {| \sb {{ \ i}}}} \ {| \sb {{ \ ijk}}} & {{i \sp {2}} \ {| \sb {{ \ jk}}}} & -{{j \sp {2}} \ {| \sb {{ \ ik}}}} & {{k \sp {2}} \ {| \sb {{ \ ij}}}} & -{{i \sp {2}} \ {j \sp {2}} \ {| \sb {{ \ k}}}} & {{i \sp {2}} \ {k \sp {2}} \ {| \sb {{ \ j}}}} & -{{j \sp {2}} \ {k \sp {2}} \ {| \sb {{ \ i}}}} & -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {| \sb {{ \ 1}}}} \end{array} \right] \leqno(26) $$
Type: Matrix(ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer))) XY := X/Y;
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) (28) -> e:=𝐞.1; i:=𝐞.2; j:=𝐞.3; k:=𝐞.4; ij:=𝐞.5; ik:=𝐞.6; jk:=𝐞.7; ijk:=𝐞.8;
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) (29) -> a:=Σ(sb('a,[i])*𝐞.i, i,1..dim)
$$ {{a \sb {1}} \ {| \sb {{ \ 1}}}}+{{a \sb {2}} \ {| \sb {{ \ i}}}}+{{a \sb {3}} \ {| \sb {{ \ j}}}}+{{a \sb {4}} \ {| \sb {{ \ k}}}}+{{a \sb {5}} \ {| \sb {{ \ ij}}}}+{{a \sb {6}} \ {| \sb {{ \ ik}}}}+{{a \sb {7}} \ {| \sb {{ \ jk}}}}+{{a \sb {8}} \ {| \sb {{ \ ijk}}}} \leqno(29) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) b:=Σ(sb('b,[i])*𝐞.i, i,1..dim)
$$ {{b \sb {1}} \ {| \sb {{ \ 1}}}}+{{b \sb {2}} \ {| \sb {{ \ i}}}}+{{b \sb {3}} \ {| \sb {{ \ j}}}}+{{b \sb {4}} \ {| \sb {{ \ k}}}}+{{b \sb {5}} \ {| \sb {{ \ ij}}}}+{{b \sb {6}} \ {| \sb {{ \ ik}}}}+{{b \sb {7}} \ {| \sb {{ \ jk}}}}+{{b \sb {8}} \ {| \sb {{ \ ijk}}}} \leqno(30) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) (a*b)/Y
$$ {{\left( -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {a \sb {8}} \ {b \sb {8}}} -{{j \sp {2}} \ {k \sp {2}} \ {a \sb {7}} \ {b \sb {7}}} -{{i \sp {2}} \ {k \sp {2}} \ {a \sb {6}} \ {b \sb {6}}} -{{i \sp {2}} \ {j \sp {2}} \ {a \sb {5}} \ {b \sb {5}}}+{{k \sp {2}} \ {a \sb {4}} \ {b \sb {4}}}+{{j \sp {2}} \ {a \sb {3}} \ {b \sb {3}}}+{{i \sp {2}} \ {a \sb {2}} \ {b \sb {2}}}+{{a \sb {1}} \ {b \sb {1}}} \right)} \ {| \sb {{ \ 1}}}}+{{\left( -{{j \sp {2}} \ {k \sp {2}} \ {a \sb {7}} \ {b \sb {8}}} -{{j \sp {2}} \ {k \sp {2}} \ {a \sb {8}} \ {b \sb {7}}} -{{k \sp {2}} \ {a \sb {4}} \ {b \sb {6}}} -{{j \sp {2}} \ {a \sb {3}} \ {b \sb {5}}}+{{k \sp {2}} \ {a \sb {6}} \ {b \sb {4}}}+{{j \sp {2}} \ {a \sb {5}} \ {b \sb {3}}}+{{a \sb {1}} \ {b \sb {2}}}+{{a \sb {2}} \ {b \sb {1}}} \right)} \ {| \sb {{ \ i}}}}+{{\left( {{i \sp {2}} \ {k \sp {2}} \ {a \sb {6}} \ {b \sb {8}}} -{{k \sp {2}} \ {a \sb {4}} \ {b \sb {7}}}+{{i \sp {2}} \ {k \sp {2}} \ {a \sb {8}} \ {b \sb {6}}}+{{i \sp {2}} \ {a \sb {2}} \ {b \sb {5}}}+{{k \sp {2}} \ {a \sb {7}} \ {b \sb {4}}}+{{a \sb {1}} \ {b \sb {3}}} -{{i \sp {2}} \ {a \sb {5}} \ {b \sb {2}}}+{{a \sb {3}} \ {b \sb {1}}} \right)} \ {| \sb {{ \ j}}}}+{{\left( -{{i \sp {2}} \ {j \sp {2}} \ {a \sb {5}} \ {b \sb {8}}}+{{j \sp {2}} \ {a \sb {3}} \ {b \sb {7}}}+{{i \sp {2}} \ {a \sb {2}} \ {b \sb {6}}} -{{i \sp {2}} \ {j \sp {2}} \ {a \sb {8}} \ {b \sb {5}}}+{{a \sb {1}} \ {b \sb {4}}} -{{j \sp {2}} \ {a \sb {7}} \ {b \sb {3}}} -{{i \sp {2}} \ {a \sb {6}} \ {b \sb {2}}}+{{a \sb {4}} \ {b \sb {1}}} \right)} \ {| \sb {{ \ k}}}}+{{\left( {{k \sp {2}} \ {a \sb {4}} \ {b \sb {8}}} -{{k \sp {2}} \ {a \sb {6}} \ {b \sb {7}}}+{{k \sp {2}} \ {a \sb {7}} \ {b \sb {6}}}+{{a \sb {1}} \ {b \sb {5}}}+{{k \sp {2}} \ {a \sb {8}} \ {b \sb {4}}}+{{a \sb {2}} \ {b \sb {3}}} -{{a \sb {3}} \ {b \sb {2}}}+{{a \sb {5}} \ {b \sb {1}}} \right)} \ {| \sb {{ \ ij}}}}+{{\left( -{{j \sp {2}} \ {a \sb {3}} \ {b \sb {8}}}+{{j \sp {2}} \ {a \sb {5}} \ {b \sb {7}}}+{{a \sb {1}} \ {b \sb {6}}} -{{j \sp {2}} \ {a \sb {7}} \ {b \sb {5}}}+{{a \sb {2}} \ {b \sb {4}}} -{{j \sp {2}} \ {a \sb {8}} \ {b \sb {3}}} -{{a \sb {4}} \ {b \sb {2}}}+{{a \sb {6}} \ {b \sb {1}}} \right)} \ {| \sb {{ \ ik}}}}+{{\left( {{i \sp {2}} \ {a \sb {2}} \ {b \sb {8}}}+{{a \sb {1}} \ {b \sb {7}}} -{{i \sp {2}} \ {a \sb {5}} \ {b \sb {6}}}+{{i \sp {2}} \ {a \sb {6}} \ {b \sb {5}}}+{{a \sb {3}} \ {b \sb {4}}} -{{a \sb {4}} \ {b \sb {3}}}+{{i \sp {2}} \ {a \sb {8}} \ {b \sb {2}}}+{{a \sb {7}} \ {b \sb {1}}} \right)} \ {| \sb {{ \ jk}}}}+{{\left( {{a \sb {1}} \ {b \sb {8}}}+{{a \sb {2}} \ {b \sb {7}}} -{{a \sb {3}} \ {b \sb {6}}}+{{a \sb {4}} \ {b \sb {5}}}+{{a \sb {5}} \ {b \sb {4}}} -{{a \sb {6}} \ {b \sb {3}}}+{{a \sb {7}} \ {b \sb {2}}}+{{a \sb {8}} \ {b \sb {1}}} \right)} \ {| \sb {{ \ ijk}}}} \leqno(31) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) (32) -> test( ( I Y ) / ( Y ) = ( Y I ) / _ ( Y ) )
$$ true \leqno(32) $$
Type: Boolean (33) -> U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim)
$$ {{u \sp {{1, \: 1}}} \ {| \sp {{ \ 1 \ 1}}}}+{{u \sp {{1, \: 2}}} \ {| \sp {{ \ 1 \ i}}}}+{{u \sp {{1, \: 3}}} \ {| \sp {{ \ 1 \ j}}}}+{{u \sp {{1, \: 4}}} \ {| \sp {{ \ 1 \ k}}}}+{{u \sp {{1, \: 5}}} \ {| \sp {{ \ 1 \ ij}}}}+{{u \sp {{1, \: 6}}} \ {| \sp {{ \ 1 \ ik}}}}+{{u \sp {{1, \: 7}}} \ {| \sp {{ \ 1 \ jk}}}}+{{u \sp {{1, \: 8}}} \ {| \sp {{ \ 1 \ ijk}}}}+{{u \sp {{2, \: 1}}} \ {| \sp {{ \ i \ 1}}}}+{{u \sp {{2, \: 2}}} \ {| \sp {{ \ i \ i}}}}+{{u \sp {{2, \: 3}}} \ {| \sp {{ \ i \ j}}}}+{{u \sp {{2, \: 4}}} \ {| \sp {{ \ i \ k}}}}+{{u \sp {{2, \: 5}}} \ {| \sp {{ \ i \ ij}}}}+{{u \sp {{2, \: 6}}} \ {| \sp {{ \ i \ ik}}}}+{{u \sp {{2, \: 7}}} \ {| \sp {{ \ i \ jk}}}}+{{u \sp {{2, \: 8}}} \ {| \sp {{ \ i \ ijk}}}}+{{u \sp {{3, \: 1}}} \ {| \sp {{ \ j \ 1}}}}+{{u \sp {{3, \: 2}}} \ {| \sp {{ \ j \ i}}}}+{{u \sp {{3, \: 3}}} \ {| \sp {{ \ j \ j}}}}+{{u \sp {{3, \: 4}}} \ {| \sp {{ \ j \ k}}}}+{{u \sp {{3, \: 5}}} \ {| \sp {{ \ j \ ij}}}}+{{u \sp {{3, \: 6}}} \ {| \sp {{ \ j \ ik}}}}+{{u \sp {{3, \: 7}}} \ {| \sp {{ \ j \ jk}}}}+{{u \sp {{3, \: 8}}} \ {| \sp {{ \ j \ ijk}}}}+{{u \sp {{4, \: 1}}} \ {| \sp {{ \ k \ 1}}}}+{{u \sp {{4, \: 2}}} \ {| \sp {{ \ k \ i}}}}+{{u \sp {{4, \: 3}}} \ {| \sp {{ \ k \ j}}}}+{{u \sp {{4, \: 4}}} \ {| \sp {{ \ k \ k}}}}+{{u \sp {{4, \: 5}}} \ {| \sp {{ \ k \ ij}}}}+{{u \sp {{4, \: 6}}} \ {| \sp {{ \ k \ ik}}}}+{{u \sp {{4, \: 7}}} \ {| \sp {{ \ k \ jk}}}}+{{u \sp {{4, \: 8}}} \ {| \sp {{ \ k \ ijk}}}}+{{u \sp {{5, \: 1}}} \ {| \sp {{ \ ij \ 1}}}}+{{u \sp {{5, \: 2}}} \ {| \sp {{ \ ij \ i}}}}+{{u \sp {{5, \: 3}}} \ {| \sp {{ \ ij \ j}}}}+{{u \sp {{5, \: 4}}} \ {| \sp {{ \ ij \ k}}}}+{{u \sp {{5, \: 5}}} \ {| \sp {{ \ ij \ ij}}}}+{{u \sp {{5, \: 6}}} \ {| \sp {{ \ ij \ ik}}}}+{{u \sp {{5, \: 7}}} \ {| \sp {{ \ ij \ jk}}}}+{{u \sp {{5, \: 8}}} \ {| \sp {{ \ ij \ ijk}}}}+{{u \sp {{6, \: 1}}} \ {| \sp {{ \ ik \ 1}}}}+{{u \sp {{6, \: 2}}} \ {| \sp {{ \ ik \ i}}}}+{{u \sp {{6, \: 3}}} \ {| \sp {{ \ ik \ j}}}}+{{u \sp {{6, \: 4}}} \ {| \sp {{ \ ik \ k}}}}+{{u \sp {{6, \: 5}}} \ {| \sp {{ \ ik \ ij}}}}+{{u \sp {{6, \: 6}}} \ {| \sp {{ \ ik \ ik}}}}+{{u \sp {{6, \: 7}}} \ {| \sp {{ \ ik \ jk}}}}+{{u \sp {{6, \: 8}}} \ {| \sp {{ \ ik \ ijk}}}}+{{u \sp {{7, \: 1}}} \ {| \sp {{ \ jk \ 1}}}}+{{u \sp {{7, \: 2}}} \ {| \sp {{ \ jk \ i}}}}+{{u \sp {{7, \: 3}}} \ {| \sp {{ \ jk \ j}}}}+{{u \sp {{7, \: 4}}} \ {| \sp {{ \ jk \ k}}}}+{{u \sp {{7, \: 5}}} \ {| \sp {{ \ jk \ ij}}}}+{{u \sp {{7, \: 6}}} \ {| \sp {{ \ jk \ ik}}}}+{{u \sp {{7, \: 7}}} \ {| \sp {{ \ jk \ jk}}}}+{{u \sp {{7, \: 8}}} \ {| \sp {{ \ jk \ ijk}}}}+{{u \sp {{8, \: 1}}} \ {| \sp {{ \ ijk \ 1}}}}+{{u \sp {{8, \: 2}}} \ {| \sp {{ \ ijk \ i}}}}+{{u \sp {{8, \: 3}}} \ {| \sp {{ \ ijk \ j}}}}+{{u \sp {{8, \: 4}}} \ {| \sp {{ \ ijk \ k}}}}+{{u \sp {{8, \: 5}}} \ {| \sp {{ \ ijk \ ij}}}}+{{u \sp {{8, \: 6}}} \ {| \sp {{ \ ijk \ ik}}}}+{{u \sp {{8, \: 7}}} \ {| \sp {{ \ ijk \ jk}}}}+{{u \sp {{8, \: 8}}} \ {| \sp {{ \ ijk \ ijk}}}} \leqno(33) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) (34) -> ω:𝐋 := ( Y I ) / U - ( I Y ) / U;
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) (35) -> Ú:= ( Y Λ ) / ( Y I ) / V
$$ {8 \ {| \sp {{ \ 1 \ 1}}}}+{8 \ {i \sp {2}} \ {| \sp {{ \ i \ i}}}}+{8 \ {j \sp {2}} \ {| \sp {{ \ j \ j}}}}+{8 \ {k \sp {2}} \ {| \sp {{ \ k \ k}}}} -{8 \ {i \sp {2}} \ {j \sp {2}} \ {| \sp {{ \ ij \ ij}}}} -{8 \ {i \sp {2}} \ {k \sp {2}} \ {| \sp {{ \ ik \ ik}}}} -{8 \ {j \sp {2}} \ {k \sp {2}} \ {| \sp {{ \ jk \ jk}}}} -{8 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {| \sp {{ \ ijk \ ijk}}}} \leqno(35) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) Ù:= ( Λ Y ) / ( I Y ) / V
$$ {8 \ {| \sp {{ \ 1 \ 1}}}}+{8 \ {i \sp {2}} \ {| \sp {{ \ i \ i}}}}+{8 \ {j \sp {2}} \ {| \sp {{ \ j \ j}}}}+{8 \ {k \sp {2}} \ {| \sp {{ \ k \ k}}}} -{8 \ {i \sp {2}} \ {j \sp {2}} \ {| \sp {{ \ ij \ ij}}}} -{8 \ {i \sp {2}} \ {k \sp {2}} \ {| \sp {{ \ ik \ ik}}}} -{8 \ {j \sp {2}} \ {k \sp {2}} \ {| \sp {{ \ jk \ jk}}}} -{8 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {| \sp {{ \ ijk \ ijk}}}} \leqno(36) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer))
test(Ù=Ú)
$$ true \leqno(37) $$
Type: Boolean (38) -> Ũ := Ù
$$ {8 \ {| \sp {{ \ 1 \ 1}}}}+{8 \ {i \sp {2}} \ {| \sp {{ \ i \ i}}}}+{8 \ {j \sp {2}} \ {| \sp {{ \ j \ j}}}}+{8 \ {k \sp {2}} \ {| \sp {{ \ k \ k}}}} -{8 \ {i \sp {2}} \ {j \sp {2}} \ {| \sp {{ \ ij \ ij}}}} -{8 \ {i \sp {2}} \ {k \sp {2}} \ {| \sp {{ \ ik \ ik}}}} -{8 \ {j \sp {2}} \ {k \sp {2}} \ {| \sp {{ \ jk \ jk}}}} -{8 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {| \sp {{ \ ijk \ ijk}}}} \leqno(38) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) test ( Y I ) / Ũ = ( I Y ) / Ũ
$$ true \leqno(39) $$
Type: Boolean determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ũ), j,1..dim), i,1..dim)
$$ {16777216} \ {{i \sp {2}} \sp 4} \ {{j \sp {2}} \sp 4} \ {{k \sp {2}} \sp 4} \leqno(40) $$
Type: Expression(Integer) (41) -> d:=ε1*𝐝.1+εi*𝐝.2+εj*𝐝.3+εk*𝐝.4+εij*𝐝.5+εik*𝐝.6+εjk*𝐝.7+εijk*𝐝.8
$$ {ε1 \ {| \sp {{ \ 1}}}}+{εi \ {| \sp {{ \ i}}}}+{εj \ {| \sp {{ \ j}}}}+{εk \ {| \sp {{ \ k}}}}+{εij \ {| \sp {{ \ ij}}}}+{εik \ {| \sp {{ \ ik}}}}+{εjk \ {| \sp {{ \ jk}}}}+{εijk \ {| \sp {{ \ ijk}}}} \leqno(41) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) Ų:= Y/d
$$ {ε1 \ {| \sp {{ \ 1 \ 1}}}}+{εi \ {| \sp {{ \ 1 \ i}}}}+{εj \ {| \sp {{ \ 1 \ j}}}}+{εk \ {| \sp {{ \ 1 \ k}}}}+{εij \ {| \sp {{ \ 1 \ ij}}}}+{εik \ {| \sp {{ \ 1 \ ik}}}}+{εjk \ {| \sp {{ \ 1 \ jk}}}}+{εijk \ {| \sp {{ \ 1 \ ijk}}}}+{εi \ {| \sp {{ \ i \ 1}}}}+{{i \sp {2}} \ ε1 \ {| \sp {{ \ i \ i}}}}+{εij \ {| \sp {{ \ i \ j}}}}+{εik \ {| \sp {{ \ i \ k}}}}+{{i \sp {2}} \ εj \ {| \sp {{ \ i \ ij}}}}+{{i \sp {2}} \ εk \ {| \sp {{ \ i \ ik}}}}+{εijk \ {| \sp {{ \ i \ jk}}}}+{{i \sp {2}} \ εjk \ {| \sp {{ \ i \ ijk}}}}+{εj \ {| \sp {{ \ j \ 1}}}} -{εij \ {| \sp {{ \ j \ i}}}}+{{j \sp {2}} \ ε1 \ {| \sp {{ \ j \ j}}}}+{εjk \ {| \sp {{ \ j \ k}}}} -{{j \sp {2}} \ εi \ {| \sp {{ \ j \ ij}}}} -{εijk \ {| \sp {{ \ j \ ik}}}}+{{j \sp {2}} \ εk \ {| \sp {{ \ j \ jk}}}} -{{j \sp {2}} \ εik \ {| \sp {{ \ j \ ijk}}}}+{εk \ {| \sp {{ \ k \ 1}}}} -{εik \ {| \sp {{ \ k \ i}}}} -{εjk \ {| \sp {{ \ k \ j}}}}+{{k \sp {2}} \ ε1 \ {| \sp {{ \ k \ k}}}}+{εijk \ {| \sp {{ \ k \ ij}}}} -{{k \sp {2}} \ εi \ {| \sp {{ \ k \ ik}}}} -{{k \sp {2}} \ εj \ {| \sp {{ \ k \ jk}}}}+{{k \sp {2}} \ εij \ {| \sp {{ \ k \ ijk}}}}+{εij \ {| \sp {{ \ ij \ 1}}}} -{{i \sp {2}} \ εj \ {| \sp {{ \ ij \ i}}}}+{{j \sp {2}} \ εi \ {| \sp {{ \ ij \ j}}}}+{εijk \ {| \sp {{ \ ij \ k}}}} -{{i \sp {2}} \ {j \sp {2}} \ ε1 \ {| \sp {{ \ ij \ ij}}}} -{{i \sp {2}} \ εjk \ {| \sp {{ \ ij \ ik}}}}+{{j \sp {2}} \ εik \ {| \sp {{ \ ij \ jk}}}} -{{i \sp {2}} \ {j \sp {2}} \ εk \ {| \sp {{ \ ij \ ijk}}}}+{εik \ {| \sp {{ \ ik \ 1}}}} -{{i \sp {2}} \ εk \ {| \sp {{ \ ik \ i}}}} -{εijk \ {| \sp {{ \ ik \ j}}}}+{{k \sp {2}} \ εi \ {| \sp {{ \ ik \ k}}}}+{{i \sp {2}} \ εjk \ {| \sp {{ \ ik \ ij}}}} -{{i \sp {2}} \ {k \sp {2}} \ ε1 \ {| \sp {{ \ ik \ ik}}}} -{{k \sp {2}} \ εij \ {| \sp {{ \ ik \ jk}}}}+{{i \sp {2}} \ {k \sp {2}} \ εj \ {| \sp {{ \ ik \ ijk}}}}+{εjk \ {| \sp {{ \ jk \ 1}}}}+{εijk \ {| \sp {{ \ jk \ i}}}} -{{j \sp {2}} \ εk \ {| \sp {{ \ jk \ j}}}}+{{k \sp {2}} \ εj \ {| \sp {{ \ jk \ k}}}} -{{j \sp {2}} \ εik \ {| \sp {{ \ jk \ ij}}}}+{{k \sp {2}} \ εij \ {| \sp {{ \ jk \ ik}}}} -{{j \sp {2}} \ {k \sp {2}} \ ε1 \ {| \sp {{ \ jk \ jk}}}} -{{j \sp {2}} \ {k \sp {2}} \ εi \ {| \sp {{ \ jk \ ijk}}}}+{εijk \ {| \sp {{ \ ijk \ 1}}}}+{{i \sp {2}} \ εjk \ {| \sp {{ \ ijk \ i}}}} -{{j \sp {2}} \ εik \ {| \sp {{ \ ijk \ j}}}}+{{k \sp {2}} \ εij \ {| \sp {{ \ ijk \ k}}}} -{{i \sp {2}} \ {j \sp {2}} \ εk \ {| \sp {{ \ ijk \ ij}}}}+{{i \sp {2}} \ {k \sp {2}} \ εj \ {| \sp {{ \ ijk \ ik}}}} -{{j \sp {2}} \ {k \sp {2}} \ εi \ {| \sp {{ \ ijk \ jk}}}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ {| \sp {{ \ ijk \ ijk}}}} \leqno(42) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) (43) -> u1:=matrix Ξ(Ξ(retract((𝐞.i 𝐞.j)/Ų), i,1..dim), j,1..dim)
$$ \left[ \begin{array}{cccccccc} ε1 & εi & εj & εk & εij & εik & εjk & εijk \ εi & {{i \sp {2}} \ ε1} & -εij & -εik & -{{i \sp {2}} \ εj} & -{{i \sp {2}} \ εk} & εijk & {{i \sp {2}} \ εjk} \ εj & εij & {{j \sp {2}} \ ε1} & -εjk & {{j \sp {2}} \ εi} & -εijk & -{{j \sp {2}} \ εk} & -{{j \sp {2}} \ εik} \ εk & εik & εjk & {{k \sp {2}} \ ε1} & εijk & {{k \sp {2}} \ εi} & {{k \sp {2}} \ εj} & {{k \sp {2}} \ εij} \ εij & {{i \sp {2}} \ εj} & -{{j \sp {2}} \ εi} & εijk & -{{i \sp {2}} \ {j \sp {2}} \ ε1} & {{i \sp {2}} \ εjk} & -{{j \sp {2}} \ εik} & -{{i \sp {2}} \ {j \sp {2}} \ εk} \ εik & {{i \sp {2}} \ εk} & -εijk & -{{k \sp {2}} \ εi} & -{{i \sp {2}} \ εjk} & -{{i \sp {2}} \ {k \sp {2}} \ ε1} & {{k \sp {2}} \ εij} & {{i \sp {2}} \ {k \sp {2}} \ εj} \ εjk & εijk & {{j \sp {2}} \ εk} & -{{k \sp {2}} \ εj} & {{j \sp {2}} \ εik} & -{{k \sp {2}} \ εij} & -{{j \sp {2}} \ {k \sp {2}} \ ε1} & -{{j \sp {2}} \ {k \sp {2}} \ εi} \ εijk & {{i \sp {2}} \ εjk} & -{{j \sp {2}} \ εik} & {{k \sp {2}} \ εij} & -{{i \sp {2}} \ {j \sp {2}} \ εk} & {{i \sp {2}} \ {k \sp {2}} \ εj} & -{{j \sp {2}} \ {k \sp {2}} \ εi} & -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1} \end{array} \right] \leqno(43) $$
Type: Matrix(Expression(Integer)) (44) -> --Ů:=determinant u1 --factor(numer Ů)/factor(denom Ů) 1
$$ 1 \leqno(44) $$
Type: PositiveInteger (45) -> ck:=solve(equate(Ũ=Ų),[ε1,εi,εj,εk,εij,εik,εjk,εijk]).1
Compiling function equate with type Equation(ClosedLinearOperator( OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer))) -> List(Equation(Expression(Integer)))
$$ \left[ {ε1=8}, \: {εi=0}, \: {εj=0}, \: {εk=0}, \: {εij=0}, \: {εik=0}, \: {εjk=0}, \: {εijk=0} \right] \leqno(45) $$
Type: List(Equation(Expression(Integer))) (46) -> a:=sb('a,[1])*i+sb('a,[2])*j+sb('a,[3])*k
$$ {{a \sb {1}} \ {| \sb {{ \ i}}}}+{{a \sb {2}} \ {| \sb {{ \ j}}}}+{{a \sb {3}} \ {| \sb {{ \ k}}}} \leqno(46) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) b:=sb('b,[1])*i+sb('b,[2])*j+sb('b,[3])*k
$$ {{b \sb {1}} \ {| \sb {{ \ i}}}}+{{b \sb {2}} \ {| \sb {{ \ j}}}}+{{b \sb {3}} \ {| \sb {{ \ k}}}} \leqno(47) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) (a,a)/Ų
$$ {\left( {{k \sp {2}} \ {{a \sb {3}} \sp 2}}+{{j \sp {2}} \ {{a \sb {2}} \sp 2}}+{{i \sp {2}} \ {{a \sb {1}} \sp 2}} \right)} \ ε1 \leqno(48) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) (b,b)/Ų
$$ {\left( {{k \sp {2}} \ {{b \sb {3}} \sp 2}}+{{j \sp {2}} \ {{b \sb {2}} \sp 2}}+{{i \sp {2}} \ {{b \sb {1}} \sp 2}} \right)} \ ε1 \leqno(49) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) (a,b)/Ų
$$ {{\left( {{a \sb {2}} \ {b \sb {3}}} -{{a \sb {3}} \ {b \sb {2}}} \right)} \ εjk}+{{\left( {{a \sb {1}} \ {b \sb {3}}} -{{a \sb {3}} \ {b \sb {1}}} \right)} \ εik}+{{\left( {{a \sb {1}} \ {b \sb {2}}} -{{a \sb {2}} \ {b \sb {1}}} \right)} \ εij}+{{\left( {{k \sp {2}} \ {a \sb {3}} \ {b \sb {3}}}+{{j \sp {2}} \ {a \sb {2}} \ {b \sb {2}}}+{{i \sp {2}} \ {a \sb {1}} \ {b \sb {1}}} \right)} \ ε1} \leqno(50) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) (51) -> mU:=inverse matrix Ξ(Ξ(retract((𝐞.i*𝐞.j)/Ų), i,1..dim), j,1..dim);
Type: Union(Matrix(Expression(Integer)),...) Ω:=Σ(Σ(mU(i,j)*(𝐞.i*𝐞.j), i,1..dim), j,1..dim);
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) ΩX:=Ω/X;
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) (54) -> --squareFreePart factor denom Ů / squareFreePart factor numer Ů matrix Ξ(Ξ(numer retract(Ω/(𝐝.i*𝐝.j)), i,1..dim), j,1..dim)
$$ \left[ \begin{array}{cccccccc} {-{{{i \sp {2}} \sp 2} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ ε1 \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ εijk \ εk}+{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εijk \ εjk} -{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ ε1 \ {εj \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εijk \ εik \ εj}+{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ ε1 \ {εik \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ {εijk \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ ε1 \ {εij \sp 2}} -{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {{k \sp {2}} \sp 2} \ ε1 \ {εi \sp 2}}+{{{i \sp {2}} \sp 2} \ {{j \sp {2}} \sp 2} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 3}}} & {{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ εi \ {εk \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ εjk \ εk}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ {εjk \sp 2}}+{{\left( -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εik \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εijk} \right)} \ εjk}+{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ εi \ {εj \sp 2}} -{{{j \sp {2}} \sp 2} \ {k \sp {2}} \ εi \ {εik \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ εi \ {εijk \sp 2}} -{{j \sp {2}} \ {{k \sp {2}} \sp 2} \ εi \ {εij \sp 2}}+{{{j \sp {2}} \sp 2} \ {{k \sp {2}} \sp 2} \ {εi \sp 3}} -{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 2} \ εi}} & {{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ εj \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ εik \ εk} -{{{i \sp {2}} \sp 2} \ {k \sp {2}} \ εj \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εik \ εjk}+{{{i \sp {2}} \sp 2} \ {{k \sp {2}} \sp 2} \ {εj \sp 3}}+{{\left( {{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {εik \sp 2}}+{{i \sp {2}} \ {k \sp {2}} \ {εijk \sp 2}} -{{i \sp {2}} \ {{k \sp {2}} \sp 2} \ {εij \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ {εi \sp 2}} -{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 2}} \right)} \ εj}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εijk \ εik}} & {{{{i \sp {2}} \sp 2} \ {{j \sp {2}} \sp 2} \ {εk \sp 3}}+{{\left( -{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {εjk \sp 2}}+{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ {εj \sp 2}} -{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {εik \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {εijk \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {εij \sp 2}}+{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ {εi \sp 2}} -{{{i \sp {2}} \sp 2} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εk}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εij \ εjk} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ εik \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εij \ εijk}} & {{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ {εk \sp 2}}+{{\left( {2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εjk} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εik \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εijk} \right)} \ εk}+{{i \sp {2}} \ {k \sp {2}} \ εij \ {εjk \sp 2}} -{{i \sp {2}} \ {{k \sp {2}} \sp 2} \ εij \ {εj \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ εij \ {εik \sp 2}} -{{k \sp {2}} \ εij \ {εijk \sp 2}}+{{{k \sp {2}} \sp 2} \ {εij \sp 3}}+{{\left( -{{j \sp {2}} \ {{k \sp {2}} \sp 2} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 2}} \right)} \ εij}} & {-{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ εik \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ εj \ εk}+{{i \sp {2}} \ {j \sp {2}} \ εik \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εj \ εjk}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εik \ {εj \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εijk \ εj}+{{{j \sp {2}} \sp 2} \ {εik \sp 3}}+{{\left( -{{j \sp {2}} \ {εijk \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εij \sp 2}} -{{{j \sp {2}} \sp 2} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εik}} & {-{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ εjk \ {εk \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εij \ εk}+{{{i \sp {2}} \sp 2} \ {εjk \sp 3}}+{{\left( -{{{i \sp {2}} \sp 2} \ {k \sp {2}} \ {εj \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {εik \sp 2}} -{{i \sp {2}} \ {εijk \sp 2}}+{{i \sp {2}} \ {k \sp {2}} \ {εij \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εjk} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εik \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εijk}} & {{{i \sp {2}} \ {j \sp {2}} \ εijk \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εij \ εk} -{{i \sp {2}} \ εijk \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εjk}+{{i \sp {2}} \ {k \sp {2}} \ εijk \ {εj \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εik \ εj} -{{j \sp {2}} \ εijk \ {εik \sp 2}}+{εijk \sp 3}+{{\left( -{{k \sp {2}} \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εijk}} \ {{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ εi \ {εk \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ εjk \ εk}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ {εjk \sp 2}}+{{\left( -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εik \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εijk} \right)} \ εjk}+{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ εi \ {εj \sp 2}} -{{{j \sp {2}} \sp 2} \ {k \sp {2}} \ εi \ {εik \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ εi \ {εijk \sp 2}} -{{j \sp {2}} \ {{k \sp {2}} \sp 2} \ εi \ {εij \sp 2}}+{{{j \sp {2}} \sp 2} \ {{k \sp {2}} \sp 2} \ {εi \sp 3}} -{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 2} \ εi}} & {-{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ ε1 \ {εk \sp 2}} -{2 \ {j \sp {2}} \ {k \sp {2}} \ εij \ εijk \ εk}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ {εjk \sp 2}} -{2 \ {j \sp {2}} \ {k \sp {2}} \ εi \ εijk \ εjk} -{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ ε1 \ {εj \sp 2}}+{2 \ {j \sp {2}} \ {k \sp {2}} \ εijk \ εik \ εj}+{{{j \sp {2}} \sp 2} \ {k \sp {2}} \ ε1 \ {εik \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ ε1 \ {εijk \sp 2}}+{{j \sp {2}} \ {{k \sp {2}} \sp 2} \ ε1 \ {εij \sp 2}} -{{{j \sp {2}} \sp 2} \ {{k \sp {2}} \sp 2} \ ε1 \ {εi \sp 2}}+{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 3}}} & {-{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ {εk \sp 2}}+{{\left( -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εjk}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εik \ εj}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εijk} \right)} \ εk} -{{i \sp {2}} \ {k \sp {2}} \ εij \ {εjk \sp 2}}+{{i \sp {2}} \ {{k \sp {2}} \sp 2} \ εij \ {εj \sp 2}} -{{j \sp {2}} \ {k \sp {2}} \ εij \ {εik \sp 2}}+{{k \sp {2}} \ εij \ {εijk \sp 2}} -{{{k \sp {2}} \sp 2} \ {εij \sp 3}}+{{\left( {{j \sp {2}} \ {{k \sp {2}} \sp 2} \ {εi \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 2}} \right)} \ εij}} & {{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ εik \ {εk \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ εj \ εk} -{{i \sp {2}} \ {j \sp {2}} \ εik \ {εjk \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εj \ εjk} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εik \ {εj \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εijk \ εj} -{{{j \sp {2}} \sp 2} \ {εik \sp 3}}+{{\left( {{j \sp {2}} \ {εijk \sp 2}} -{{j \sp {2}} \ {k \sp {2}} \ {εij \sp 2}}+{{{j \sp {2}} \sp 2} \ {k \sp {2}} \ {εi \sp 2}} -{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εik}} & {-{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εj \ {εk \sp 2}}+{2 \ {j \sp {2}} \ {k \sp {2}} \ εij \ εik \ εk}+{{i \sp {2}} \ {k \sp {2}} \ εj \ {εjk \sp 2}}+{2 \ {j \sp {2}} \ {k \sp {2}} \ εi \ εik \ εjk} -{{i \sp {2}} \ {{k \sp {2}} \sp 2} \ {εj \sp 3}}+{{\left( -{{j \sp {2}} \ {k \sp {2}} \ {εik \sp 2}} -{{k \sp {2}} \ {εijk \sp 2}}+{{{k \sp {2}} \sp 2} \ {εij \sp 2}} -{{j \sp {2}} \ {{k \sp {2}} \sp 2} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 2}} \right)} \ εj} -{2 \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εijk \ εik}} & {-{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {εk \sp 3}}+{{\left( {{i \sp {2}} \ {j \sp {2}} \ {εjk \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {εj \sp 2}}+{{{j \sp {2}} \sp 2} \ {εik \sp 2}} -{{j \sp {2}} \ {εijk \sp 2}} -{{j \sp {2}} \ {k \sp {2}} \ {εij \sp 2}} -{{{j \sp {2}} \sp 2} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εk} -{2 \ {j \sp {2}} \ {k \sp {2}} \ εi \ εij \ εjk}+{2 \ {j \sp {2}} \ {k \sp {2}} \ εij \ εik \ εj}+{2 \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εij \ εijk}} & {{{i \sp {2}} \ {j \sp {2}} \ εijk \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εij \ εk} -{{i \sp {2}} \ εijk \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εjk}+{{i \sp {2}} \ {k \sp {2}} \ εijk \ {εj \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εik \ εj} -{{j \sp {2}} \ εijk \ {εik \sp 2}}+{εijk \sp 3}+{{\left( -{{k \sp {2}} \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εijk}} & {-{{i \sp {2}} \ {j \sp {2}} \ εjk \ {εk \sp 2}}+{2 \ {j \sp {2}} \ {k \sp {2}} \ εi \ εij \ εk}+{{i \sp {2}} \ {εjk \sp 3}}+{{\left( -{{i \sp {2}} \ {k \sp {2}} \ {εj \sp 2}}+{{j \sp {2}} \ {εik \sp 2}} -{εijk \sp 2}+{{k \sp {2}} \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εjk} -{2 \ {j \sp {2}} \ {k \sp {2}} \ εi \ εik \ εj} -{2 \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εijk}} \ {{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ εj \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ εik \ εk} -{{{i \sp {2}} \sp 2} \ {k \sp {2}} \ εj \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εik \ εjk}+{{{i \sp {2}} \sp 2} \ {{k \sp {2}} \sp 2} \ {εj \sp 3}}+{{\left( {{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {εik \sp 2}}+{{i \sp {2}} \ {k \sp {2}} \ {εijk \sp 2}} -{{i \sp {2}} \ {{k \sp {2}} \sp 2} \ {εij \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ {εi \sp 2}} -{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 2}} \right)} \ εj}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εijk \ εik}} & {{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ {εk \sp 2}}+{{\left( {2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εjk} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εik \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εijk} \right)} \ εk}+{{i \sp {2}} \ {k \sp {2}} \ εij \ {εjk \sp 2}} -{{i \sp {2}} \ {{k \sp {2}} \sp 2} \ εij \ {εj \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ εij \ {εik \sp 2}} -{{k \sp {2}} \ εij \ {εijk \sp 2}}+{{{k \sp {2}} \sp 2} \ {εij \sp 3}}+{{\left( -{{j \sp {2}} \ {{k \sp {2}} \sp 2} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 2}} \right)} \ εij}} & {-{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {k \sp {2}} \ εij \ εijk \ εk}+{{{i \sp {2}} \sp 2} \ {k \sp {2}} \ ε1 \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {k \sp {2}} \ εi \ εijk \ εjk} -{{{i \sp {2}} \sp 2} \ {{k \sp {2}} \sp 2} \ ε1 \ {εj \sp 2}}+{2 \ {i \sp {2}} \ {k \sp {2}} \ εijk \ εik \ εj}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ {εik \sp 2}}+{{i \sp {2}} \ {k \sp {2}} \ ε1 \ {εijk \sp 2}}+{{i \sp {2}} \ {{k \sp {2}} \sp 2} \ ε1 \ {εij \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ ε1 \ {εi \sp 2}}+{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 3}}} & {{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ εjk \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εij \ εk} -{{{i \sp {2}} \sp 2} \ {εjk \sp 3}}+{{\left( {{{i \sp {2}} \sp 2} \ {k \sp {2}} \ {εj \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {εik \sp 2}}+{{i \sp {2}} \ {εijk \sp 2}} -{{i \sp {2}} \ {k \sp {2}} \ {εij \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}} -{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εjk}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εik \ εj}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εijk}} & {{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ {εk \sp 2}}+{2 \ {i \sp {2}} \ {k \sp {2}} \ εij \ εjk \ εk}+{{i \sp {2}} \ {k \sp {2}} \ εi \ {εjk \sp 2}}+{{\left( -{2 \ {i \sp {2}} \ {k \sp {2}} \ εik \ εj} -{2 \ {i \sp {2}} \ {k \sp {2}} \ ε1 \ εijk} \right)} \ εjk}+{{i \sp {2}} \ {{k \sp {2}} \sp 2} \ εi \ {εj \sp 2}} -{{j \sp {2}} \ {k \sp {2}} \ εi \ {εik \sp 2}}+{{k \sp {2}} \ εi \ {εijk \sp 2}} -{{{k \sp {2}} \sp 2} \ εi \ {εij \sp 2}}+{{j \sp {2}} \ {{k \sp {2}} \sp 2} \ {εi \sp 3}} -{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 2} \ εi}} & {-{{i \sp {2}} \ {j \sp {2}} \ εijk \ {εk \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εij \ εk}+{{i \sp {2}} \ εijk \ {εjk \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εjk} -{{i \sp {2}} \ {k \sp {2}} \ εijk \ {εj \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εik \ εj}+{{j \sp {2}} \ εijk \ {εik \sp 2}} -{εijk \sp 3}+{{\left( {{k \sp {2}} \ {εij \sp 2}} -{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εijk}} & {-{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {εk \sp 3}}+{{\left( {{{i \sp {2}} \sp 2} \ {εjk \sp 2}} -{{{i \sp {2}} \sp 2} \ {k \sp {2}} \ {εj \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {εik \sp 2}} -{{i \sp {2}} \ {εijk \sp 2}} -{{i \sp {2}} \ {k \sp {2}} \ {εij \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εk} -{2 \ {i \sp {2}} \ {k \sp {2}} \ εi \ εij \ εjk}+{2 \ {i \sp {2}} \ {k \sp {2}} \ εij \ εik \ εj}+{2 \ {i \sp {2}} \ {k \sp {2}} \ ε1 \ εij \ εijk}} & {{{i \sp {2}} \ {j \sp {2}} \ εik \ {εk \sp 2}}+{2 \ {i \sp {2}} \ {k \sp {2}} \ εij \ εj \ εk} -{{i \sp {2}} \ εik \ {εjk \sp 2}}+{2 \ {i \sp {2}} \ {k \sp {2}} \ εi \ εj \ εjk} -{{i \sp {2}} \ {k \sp {2}} \ εik \ {εj \sp 2}} -{2 \ {i \sp {2}} \ {k \sp {2}} \ ε1 \ εijk \ εj} -{{j \sp {2}} \ {εik \sp 3}}+{{\left( {εijk \sp 2} -{{k \sp {2}} \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εik}} \ {{{{i \sp {2}} \sp 2} \ {{j \sp {2}} \sp 2} \ {εk \sp 3}}+{{\left( -{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {εjk \sp 2}}+{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ {εj \sp 2}} -{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {εik \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {εijk \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {εij \sp 2}}+{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ {εi \sp 2}} -{{{i \sp {2}} \sp 2} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εk}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εij \ εjk} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ εik \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εij \ εijk}} & {-{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ εik \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ εj \ εk}+{{i \sp {2}} \ {j \sp {2}} \ εik \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εj \ εjk}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εik \ {εj \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εijk \ εj}+{{{j \sp {2}} \sp 2} \ {εik \sp 3}}+{{\left( -{{j \sp {2}} \ {εijk \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εij \sp 2}} -{{{j \sp {2}} \sp 2} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εik}} & {-{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ εjk \ {εk \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εij \ εk}+{{{i \sp {2}} \sp 2} \ {εjk \sp 3}}+{{\left( -{{{i \sp {2}} \sp 2} \ {k \sp {2}} \ {εj \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {εik \sp 2}} -{{i \sp {2}} \ {εijk \sp 2}}+{{i \sp {2}} \ {k \sp {2}} \ {εij \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εjk} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εik \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εijk}} & {-{{{i \sp {2}} \sp 2} \ {{j \sp {2}} \sp 2} \ ε1 \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ εij \ εijk \ εk}+{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ ε1 \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ εi \ εijk \ εjk} -{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ {εj \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ εijk \ εik \ εj}+{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ ε1 \ {εik \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ ε1 \ {εijk \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ {εij \sp 2}} -{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ ε1 \ {εi \sp 2}}+{{{i \sp {2}} \sp 2} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ {ε1 \sp 3}}} & {{{i \sp {2}} \ {j \sp {2}} \ εijk \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εij \ εk} -{{i \sp {2}} \ εijk \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εjk}+{{i \sp {2}} \ {k \sp {2}} \ εijk \ {εj \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εik \ εj} -{{j \sp {2}} \ εijk \ {εik \sp 2}}+{εijk \sp 3}+{{\left( -{{k \sp {2}} \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εijk}} & {{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ εi \ {εk \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ εij \ εjk \ εk}+{{i \sp {2}} \ {j \sp {2}} \ εi \ {εjk \sp 2}}+{{\left( -{2 \ {i \sp {2}} \ {j \sp {2}} \ εik \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ ε1 \ εijk} \right)} \ εjk}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ {εj \sp 2}} -{{{j \sp {2}} \sp 2} \ εi \ {εik \sp 2}}+{{j \sp {2}} \ εi \ {εijk \sp 2}} -{{j \sp {2}} \ {k \sp {2}} \ εi \ {εij \sp 2}}+{{{j \sp {2}} \sp 2} \ {k \sp {2}} \ {εi \sp 3}} -{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ {ε1 \sp 2} \ εi}} & {{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ εj \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ εij \ εik \ εk} -{{{i \sp {2}} \sp 2} \ εj \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ εi \ εik \ εjk}+{{{i \sp {2}} \sp 2} \ {k \sp {2}} \ {εj \sp 3}}+{{\left( {{i \sp {2}} \ {j \sp {2}} \ {εik \sp 2}}+{{i \sp {2}} \ {εijk \sp 2}} -{{i \sp {2}} \ {k \sp {2}} \ {εij \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}} -{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εj}+{2 \ {i \sp {2}} \ {j \sp {2}} \ ε1 \ εijk \ εik}} & {{{i \sp {2}} \ {j \sp {2}} \ εij \ {εk \sp 2}}+{{\left( {2 \ {i \sp {2}} \ {j \sp {2}} \ εi \ εjk} -{2 \ {i \sp {2}} \ {j \sp {2}} \ εik \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ ε1 \ εijk} \right)} \ εk}+{{i \sp {2}} \ εij \ {εjk \sp 2}} -{{i \sp {2}} \ {k \sp {2}} \ εij \ {εj \sp 2}}+{{j \sp {2}} \ εij \ {εik \sp 2}} -{εij \ {εijk \sp 2}}+{{k \sp {2}} \ {εij \sp 3}}+{{\left( -{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εij}} \ {{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ {εk \sp 2}}+{{\left( {2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εjk} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εik \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εijk} \right)} \ εk}+{{i \sp {2}} \ {k \sp {2}} \ εij \ {εjk \sp 2}} -{{i \sp {2}} \ {{k \sp {2}} \sp 2} \ εij \ {εj \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ εij \ {εik \sp 2}} -{{k \sp {2}} \ εij \ {εijk \sp 2}}+{{{k \sp {2}} \sp 2} \ {εij \sp 3}}+{{\left( -{{j \sp {2}} \ {{k \sp {2}} \sp 2} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 2}} \right)} \ εij}} & {{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εj \ {εk \sp 2}} -{2 \ {j \sp {2}} \ {k \sp {2}} \ εij \ εik \ εk} -{{i \sp {2}} \ {k \sp {2}} \ εj \ {εjk \sp 2}} -{2 \ {j \sp {2}} \ {k \sp {2}} \ εi \ εik \ εjk}+{{i \sp {2}} \ {{k \sp {2}} \sp 2} \ {εj \sp 3}}+{{\left( {{j \sp {2}} \ {k \sp {2}} \ {εik \sp 2}}+{{k \sp {2}} \ {εijk \sp 2}} -{{{k \sp {2}} \sp 2} \ {εij \sp 2}}+{{j \sp {2}} \ {{k \sp {2}} \sp 2} \ {εi \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 2}} \right)} \ εj}+{2 \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εijk \ εik}} & {-{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {k \sp {2}} \ εij \ εjk \ εk} -{{i \sp {2}} \ {k \sp {2}} \ εi \ {εjk \sp 2}}+{{\left( {2 \ {i \sp {2}} \ {k \sp {2}} \ εik \ εj}+{2 \ {i \sp {2}} \ {k \sp {2}} \ ε1 \ εijk} \right)} \ εjk} -{{i \sp {2}} \ {{k \sp {2}} \sp 2} \ εi \ {εj \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ εi \ {εik \sp 2}} -{{k \sp {2}} \ εi \ {εijk \sp 2}}+{{{k \sp {2}} \sp 2} \ εi \ {εij \sp 2}} -{{j \sp {2}} \ {{k \sp {2}} \sp 2} \ {εi \sp 3}}+{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 2} \ εi}} & {{{i \sp {2}} \ {j \sp {2}} \ εijk \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εij \ εk} -{{i \sp {2}} \ εijk \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εjk}+{{i \sp {2}} \ {k \sp {2}} \ εijk \ {εj \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εik \ εj} -{{j \sp {2}} \ εijk \ {εik \sp 2}}+{εijk \sp 3}+{{\left( -{{k \sp {2}} \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εijk}} & {{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ {εk \sp 2}}+{2 \ {k \sp {2}} \ εij \ εijk \ εk} -{{i \sp {2}} \ {k \sp {2}} \ ε1 \ {εjk \sp 2}}+{2 \ {k \sp {2}} \ εi \ εijk \ εjk}+{{i \sp {2}} \ {{k \sp {2}} \sp 2} \ ε1 \ {εj \sp 2}} -{2 \ {k \sp {2}} \ εijk \ εik \ εj} -{{j \sp {2}} \ {k \sp {2}} \ ε1 \ {εik \sp 2}} -{{k \sp {2}} \ ε1 \ {εijk \sp 2}} -{{{k \sp {2}} \sp 2} \ ε1 \ {εij \sp 2}}+{{j \sp {2}} \ {{k \sp {2}} \sp 2} \ ε1 \ {εi \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {{k \sp {2}} \sp 2} \ {ε1 \sp 3}}} & {-{{i \sp {2}} \ {j \sp {2}} \ εjk \ {εk \sp 2}}+{2 \ {j \sp {2}} \ {k \sp {2}} \ εi \ εij \ εk}+{{i \sp {2}} \ {εjk \sp 3}}+{{\left( -{{i \sp {2}} \ {k \sp {2}} \ {εj \sp 2}}+{{j \sp {2}} \ {εik \sp 2}} -{εijk \sp 2}+{{k \sp {2}} \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εjk} -{2 \ {j \sp {2}} \ {k \sp {2}} \ εi \ εik \ εj} -{2 \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εijk}} & {{{i \sp {2}} \ {j \sp {2}} \ εik \ {εk \sp 2}}+{2 \ {i \sp {2}} \ {k \sp {2}} \ εij \ εj \ εk} -{{i \sp {2}} \ εik \ {εjk \sp 2}}+{2 \ {i \sp {2}} \ {k \sp {2}} \ εi \ εj \ εjk} -{{i \sp {2}} \ {k \sp {2}} \ εik \ {εj \sp 2}} -{2 \ {i \sp {2}} \ {k \sp {2}} \ ε1 \ εijk \ εj} -{{j \sp {2}} \ {εik \sp 3}}+{{\left( {εijk \sp 2} -{{k \sp {2}} \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εik}} & {-{{i \sp {2}} \ {j \sp {2}} \ {εk \sp 3}}+{{\left( {{i \sp {2}} \ {εjk \sp 2}} -{{i \sp {2}} \ {k \sp {2}} \ {εj \sp 2}}+{{j \sp {2}} \ {εik \sp 2}} -{εijk \sp 2} -{{k \sp {2}} \ {εij \sp 2}} -{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εk} -{2 \ {k \sp {2}} \ εi \ εij \ εjk}+{2 \ {k \sp {2}} \ εij \ εik \ εj}+{2 \ {k \sp {2}} \ ε1 \ εij \ εijk}} \ {-{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ εik \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εij \ εj \ εk}+{{i \sp {2}} \ {j \sp {2}} \ εik \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εj \ εjk}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εik \ {εj \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εijk \ εj}+{{{j \sp {2}} \sp 2} \ {εik \sp 3}}+{{\left( -{{j \sp {2}} \ {εijk \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εij \sp 2}} -{{{j \sp {2}} \sp 2} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εik}} & {{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {εk \sp 3}}+{{\left( -{{i \sp {2}} \ {j \sp {2}} \ {εjk \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {εj \sp 2}} -{{{j \sp {2}} \sp 2} \ {εik \sp 2}}+{{j \sp {2}} \ {εijk \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εij \sp 2}}+{{{j \sp {2}} \sp 2} \ {k \sp {2}} \ {εi \sp 2}} -{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εk}+{2 \ {j \sp {2}} \ {k \sp {2}} \ εi \ εij \ εjk} -{2 \ {j \sp {2}} \ {k \sp {2}} \ εij \ εik \ εj} -{2 \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εij \ εijk}} & {-{{i \sp {2}} \ {j \sp {2}} \ εijk \ {εk \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εij \ εk}+{{i \sp {2}} \ εijk \ {εjk \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εjk} -{{i \sp {2}} \ {k \sp {2}} \ εijk \ {εj \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εik \ εj}+{{j \sp {2}} \ εijk \ {εik \sp 2}} -{εijk \sp 3}+{{\left( {{k \sp {2}} \ {εij \sp 2}} -{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εijk}} & {-{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ εi \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ εij \ εjk \ εk} -{{i \sp {2}} \ {j \sp {2}} \ εi \ {εjk \sp 2}}+{{\left( {2 \ {i \sp {2}} \ {j \sp {2}} \ εik \ εj}+{2 \ {i \sp {2}} \ {j \sp {2}} \ ε1 \ εijk} \right)} \ εjk} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ {εj \sp 2}}+{{{j \sp {2}} \sp 2} \ εi \ {εik \sp 2}} -{{j \sp {2}} \ εi \ {εijk \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ εi \ {εij \sp 2}} -{{{j \sp {2}} \sp 2} \ {k \sp {2}} \ {εi \sp 3}}+{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ {ε1 \sp 2} \ εi}} & {{{i \sp {2}} \ {j \sp {2}} \ εjk \ {εk \sp 2}} -{2 \ {j \sp {2}} \ {k \sp {2}} \ εi \ εij \ εk} -{{i \sp {2}} \ {εjk \sp 3}}+{{\left( {{i \sp {2}} \ {k \sp {2}} \ {εj \sp 2}} -{{j \sp {2}} \ {εik \sp 2}}+{εijk \sp 2} -{{k \sp {2}} \ {εij \sp 2}} -{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εjk}+{2 \ {j \sp {2}} \ {k \sp {2}} \ εi \ εik \ εj}+{2 \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εijk}} & {{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ ε1 \ {εk \sp 2}}+{2 \ {j \sp {2}} \ εij \ εijk \ εk} -{{i \sp {2}} \ {j \sp {2}} \ ε1 \ {εjk \sp 2}}+{2 \ {j \sp {2}} \ εi \ εijk \ εjk}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ {εj \sp 2}} -{2 \ {j \sp {2}} \ εijk \ εik \ εj} -{{{j \sp {2}} \sp 2} \ ε1 \ {εik \sp 2}} -{{j \sp {2}} \ ε1 \ {εijk \sp 2}} -{{j \sp {2}} \ {k \sp {2}} \ ε1 \ {εij \sp 2}}+{{{j \sp {2}} \sp 2} \ {k \sp {2}} \ ε1 \ {εi \sp 2}} -{{i \sp {2}} \ {{j \sp {2}} \sp 2} \ {k \sp {2}} \ {ε1 \sp 3}}} & {{{i \sp {2}} \ {j \sp {2}} \ εij \ {εk \sp 2}}+{{\left( {2 \ {i \sp {2}} \ {j \sp {2}} \ εi \ εjk} -{2 \ {i \sp {2}} \ {j \sp {2}} \ εik \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ ε1 \ εijk} \right)} \ εk}+{{i \sp {2}} \ εij \ {εjk \sp 2}} -{{i \sp {2}} \ {k \sp {2}} \ εij \ {εj \sp 2}}+{{j \sp {2}} \ εij \ {εik \sp 2}} -{εij \ {εijk \sp 2}}+{{k \sp {2}} \ {εij \sp 3}}+{{\left( -{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εij}} & {{{i \sp {2}} \ {j \sp {2}} \ εj \ {εk \sp 2}} -{2 \ {j \sp {2}} \ εij \ εik \ εk} -{{i \sp {2}} \ εj \ {εjk \sp 2}} -{2 \ {j \sp {2}} \ εi \ εik \ εjk}+{{i \sp {2}} \ {k \sp {2}} \ {εj \sp 3}}+{{\left( {{j \sp {2}} \ {εik \sp 2}}+{εijk \sp 2} -{{k \sp {2}} \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εj}+{2 \ {j \sp {2}} \ ε1 \ εijk \ εik}} \ {-{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ εjk \ {εk \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εij \ εk}+{{{i \sp {2}} \sp 2} \ {εjk \sp 3}}+{{\left( -{{{i \sp {2}} \sp 2} \ {k \sp {2}} \ {εj \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {εik \sp 2}} -{{i \sp {2}} \ {εijk \sp 2}}+{{i \sp {2}} \ {k \sp {2}} \ {εij \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εjk} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ εi \ εik \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εijk}} & {{{i \sp {2}} \ {j \sp {2}} \ εijk \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εij \ εk} -{{i \sp {2}} \ εijk \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εjk}+{{i \sp {2}} \ {k \sp {2}} \ εijk \ {εj \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εik \ εj} -{{j \sp {2}} \ εijk \ {εik \sp 2}}+{εijk \sp 3}+{{\left( -{{k \sp {2}} \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εijk}} & {{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {εk \sp 3}}+{{\left( -{{{i \sp {2}} \sp 2} \ {εjk \sp 2}}+{{{i \sp {2}} \sp 2} \ {k \sp {2}} \ {εj \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {εik \sp 2}}+{{i \sp {2}} \ {εijk \sp 2}}+{{i \sp {2}} \ {k \sp {2}} \ {εij \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}} -{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εk}+{2 \ {i \sp {2}} \ {k \sp {2}} \ εi \ εij \ εjk} -{2 \ {i \sp {2}} \ {k \sp {2}} \ εij \ εik \ εj} -{2 \ {i \sp {2}} \ {k \sp {2}} \ ε1 \ εij \ εijk}} & {-{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ εj \ {εk \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ εij \ εik \ εk}+{{{i \sp {2}} \sp 2} \ εj \ {εjk \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ εi \ εik \ εjk} -{{{i \sp {2}} \sp 2} \ {k \sp {2}} \ {εj \sp 3}}+{{\left( -{{i \sp {2}} \ {j \sp {2}} \ {εik \sp 2}} -{{i \sp {2}} \ {εijk \sp 2}}+{{i \sp {2}} \ {k \sp {2}} \ {εij \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ ε1 \ εijk \ εik}} & {-{{i \sp {2}} \ {j \sp {2}} \ εik \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {k \sp {2}} \ εij \ εj \ εk}+{{i \sp {2}} \ εik \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {k \sp {2}} \ εi \ εj \ εjk}+{{i \sp {2}} \ {k \sp {2}} \ εik \ {εj \sp 2}}+{2 \ {i \sp {2}} \ {k \sp {2}} \ ε1 \ εijk \ εj}+{{j \sp {2}} \ {εik \sp 3}}+{{\left( -{εijk \sp 2}+{{k \sp {2}} \ {εij \sp 2}} -{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εik}} & {-{{i \sp {2}} \ {j \sp {2}} \ εij \ {εk \sp 2}}+{{\left( -{2 \ {i \sp {2}} \ {j \sp {2}} \ εi \ εjk}+{2 \ {i \sp {2}} \ {j \sp {2}} \ εik \ εj}+{2 \ {i \sp {2}} \ {j \sp {2}} \ ε1 \ εijk} \right)} \ εk} -{{i \sp {2}} \ εij \ {εjk \sp 2}}+{{i \sp {2}} \ {k \sp {2}} \ εij \ {εj \sp 2}} -{{j \sp {2}} \ εij \ {εik \sp 2}}+{εij \ {εijk \sp 2}} -{{k \sp {2}} \ {εij \sp 3}}+{{\left( {{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εij}} & {{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ ε1 \ {εk \sp 2}}+{2 \ {i \sp {2}} \ εij \ εijk \ εk} -{{{i \sp {2}} \sp 2} \ ε1 \ {εjk \sp 2}}+{2 \ {i \sp {2}} \ εi \ εijk \ εjk}+{{{i \sp {2}} \sp 2} \ {k \sp {2}} \ ε1 \ {εj \sp 2}} -{2 \ {i \sp {2}} \ εijk \ εik \ εj} -{{i \sp {2}} \ {j \sp {2}} \ ε1 \ {εik \sp 2}} -{{i \sp {2}} \ ε1 \ {εijk \sp 2}} -{{i \sp {2}} \ {k \sp {2}} \ ε1 \ {εij \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ {εi \sp 2}} -{{{i \sp {2}} \sp 2} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 3}}} & {-{{i \sp {2}} \ {j \sp {2}} \ εi \ {εk \sp 2}} -{2 \ {i \sp {2}} \ εij \ εjk \ εk} -{{i \sp {2}} \ εi \ {εjk \sp 2}}+{{\left( {2 \ {i \sp {2}} \ εik \ εj}+{2 \ {i \sp {2}} \ ε1 \ εijk} \right)} \ εjk} -{{i \sp {2}} \ {k \sp {2}} \ εi \ {εj \sp 2}}+{{j \sp {2}} \ εi \ {εik \sp 2}} -{εi \ {εijk \sp 2}}+{{k \sp {2}} \ εi \ {εij \sp 2}} -{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 3}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2} \ εi}} \ {{{i \sp {2}} \ {j \sp {2}} \ εijk \ {εk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εij \ εk} -{{i \sp {2}} \ εijk \ {εjk \sp 2}} -{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εjk}+{{i \sp {2}} \ {k \sp {2}} \ εijk \ {εj \sp 2}}+{2 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εik \ εj} -{{j \sp {2}} \ εijk \ {εik \sp 2}}+{εijk \sp 3}+{{\left( -{{k \sp {2}} \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εijk}} & {-{{i \sp {2}} \ {j \sp {2}} \ εjk \ {εk \sp 2}}+{2 \ {j \sp {2}} \ {k \sp {2}} \ εi \ εij \ εk}+{{i \sp {2}} \ {εjk \sp 3}}+{{\left( -{{i \sp {2}} \ {k \sp {2}} \ {εj \sp 2}}+{{j \sp {2}} \ {εik \sp 2}} -{εijk \sp 2}+{{k \sp {2}} \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εjk} -{2 \ {j \sp {2}} \ {k \sp {2}} \ εi \ εik \ εj} -{2 \ {j \sp {2}} \ {k \sp {2}} \ ε1 \ εi \ εijk}} & {{{i \sp {2}} \ {j \sp {2}} \ εik \ {εk \sp 2}}+{2 \ {i \sp {2}} \ {k \sp {2}} \ εij \ εj \ εk} -{{i \sp {2}} \ εik \ {εjk \sp 2}}+{2 \ {i \sp {2}} \ {k \sp {2}} \ εi \ εj \ εjk} -{{i \sp {2}} \ {k \sp {2}} \ εik \ {εj \sp 2}} -{2 \ {i \sp {2}} \ {k \sp {2}} \ ε1 \ εijk \ εj} -{{j \sp {2}} \ {εik \sp 3}}+{{\left( {εijk \sp 2} -{{k \sp {2}} \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εik}} & {{{i \sp {2}} \ {j \sp {2}} \ εij \ {εk \sp 2}}+{{\left( {2 \ {i \sp {2}} \ {j \sp {2}} \ εi \ εjk} -{2 \ {i \sp {2}} \ {j \sp {2}} \ εik \ εj} -{2 \ {i \sp {2}} \ {j \sp {2}} \ ε1 \ εijk} \right)} \ εk}+{{i \sp {2}} \ εij \ {εjk \sp 2}} -{{i \sp {2}} \ {k \sp {2}} \ εij \ {εj \sp 2}}+{{j \sp {2}} \ εij \ {εik \sp 2}} -{εij \ {εijk \sp 2}}+{{k \sp {2}} \ {εij \sp 3}}+{{\left( -{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εij}} & {-{{i \sp {2}} \ {j \sp {2}} \ {εk \sp 3}}+{{\left( {{i \sp {2}} \ {εjk \sp 2}} -{{i \sp {2}} \ {k \sp {2}} \ {εj \sp 2}}+{{j \sp {2}} \ {εik \sp 2}} -{εijk \sp 2} -{{k \sp {2}} \ {εij \sp 2}} -{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εk} -{2 \ {k \sp {2}} \ εi \ εij \ εjk}+{2 \ {k \sp {2}} \ εij \ εik \ εj}+{2 \ {k \sp {2}} \ ε1 \ εij \ εijk}} & {{{i \sp {2}} \ {j \sp {2}} \ εj \ {εk \sp 2}} -{2 \ {j \sp {2}} \ εij \ εik \ εk} -{{i \sp {2}} \ εj \ {εjk \sp 2}} -{2 \ {j \sp {2}} \ εi \ εik \ εjk}+{{i \sp {2}} \ {k \sp {2}} \ {εj \sp 3}}+{{\left( {{j \sp {2}} \ {εik \sp 2}}+{εijk \sp 2} -{{k \sp {2}} \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2}} \right)} \ εj}+{2 \ {j \sp {2}} \ ε1 \ εijk \ εik}} & {-{{i \sp {2}} \ {j \sp {2}} \ εi \ {εk \sp 2}} -{2 \ {i \sp {2}} \ εij \ εjk \ εk} -{{i \sp {2}} \ εi \ {εjk \sp 2}}+{{\left( {2 \ {i \sp {2}} \ εik \ εj}+{2 \ {i \sp {2}} \ ε1 \ εijk} \right)} \ εjk} -{{i \sp {2}} \ {k \sp {2}} \ εi \ {εj \sp 2}}+{{j \sp {2}} \ εi \ {εik \sp 2}} -{εi \ {εijk \sp 2}}+{{k \sp {2}} \ εi \ {εij \sp 2}} -{{j \sp {2}} \ {k \sp {2}} \ {εi \sp 3}}+{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 2} \ εi}} & {{{i \sp {2}} \ {j \sp {2}} \ ε1 \ {εk \sp 2}}+{2 \ εij \ εijk \ εk} -{{i \sp {2}} \ ε1 \ {εjk \sp 2}}+{2 \ εi \ εijk \ εjk}+{{i \sp {2}} \ {k \sp {2}} \ ε1 \ {εj \sp 2}} -{2 \ εijk \ εik \ εj} -{{j \sp {2}} \ ε1 \ {εik \sp 2}} -{ε1 \ {εijk \sp 2}} -{{k \sp {2}} \ ε1 \ {εij \sp 2}}+{{j \sp {2}} \ {k \sp {2}} \ ε1 \ {εi \sp 2}} -{{i \sp {2}} \ {j \sp {2}} \ {k \sp {2}} \ {ε1 \sp 3}}} \end{array} \right] \leqno(54) $$
Type: Matrix(SparseMultivariatePolynomial(Integer,Kernel(Expression(Integer)))) (55) -> O:𝐋:= Ω / Ų
$$ 8 \leqno(55) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer))
test ( I ΩX ) / ( Ų I ) = I
$$ true \leqno(56) $$
Type: Boolean
test ( ΩX I ) / ( I Ų ) = I
$$ true \leqno(57) $$
Type: Boolean (58) -> eval(Ω,ck)
$$ {{1 \over 8} \ {| \sb {{ \ 1 \ 1}}}}+{{1 \over {8 \ {i \sp {2}}}} \ {| \sb {{ \ i \ i}}}}+{{1 \over {8 \ {j \sp {2}}}} \ {| \sb {{ \ j \ j}}}}+{{1 \over {8 \ {k \sp {2}}}} \ {| \sb {{ \ k \ k}}}} -{{1 \over {8 \ {i \sp {2}} \ {j \sp {2}}}} \ {| \sb {{ \ ij \ ij}}}} -{{1 \over {8 \ {i \sp {2}} \ {k \sp {2}}}} \ {| \sb {{ \ ik \ ik}}}} -{{1 \over {8 \ {j \sp {2}} \ {k \sp {2}}}} \ {| \sb {{ \ jk \ jk}}}} -{{1 \over {8 \ {i \sp {2}} \ {j \sp {2}} \ {k \sp {2}}}} \ {| \sb {{ \ ijk \ ijk}}}} \leqno(58) $$
Type: ClosedLinearOperator(OrderedVariableList([1,i,j,k,ij,ik,jk,ijk]),Expression(Integer)) (59) -> W:= (Y I) / Ų;
( ΩX I ΩX ) / ( I W I )
This is pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6) \write18 enabled. %&-line parsing enabled. entering extended mode (./3510964837723695379-16.0px.tex LaTeX2e <2005/12/01> Babel <v3.8h> and hyphenation patterns for english, usenglishmax, dumylang, noh yphenation, arabic, farsi, croatian, ukrainian, russian, bulgarian, czech, slov ak, danish, dutch, finnish, basque, french, german, ngerman, ibycus, greek, mon ogreek, ancientgreek, hungarian, italian, latin, mongolian, norsk, icelandic, i nterlingua, turkish, coptic, romanian, welsh, serbian, slovenian, estonian, esp eranto, uppersorbian, indonesian, polish, portuguese, spanish, catalan, galicia n, swedish, ukenglish, pinyin, loaded. (/usr/share/texmf-texlive/tex/latex/base/article.cls Document Class: article 2005/09/16 v1.4f Standard LaTeX document class (/usr/share/texmf-texlive/tex/latex/base/size12.clo)) (/usr/share/texmf-texlive/tex/latex/ucs/ucs.sty (/usr/share/texmf-texlive/tex/latex/ucs/data/uni-global.def)) (/usr/share/texmf-texlive/tex/latex/base/inputenc.sty (/usr/share/texmf-texlive/tex/latex/ucs/utf8x.def)) (/usr/share/texmf-texlive/tex/latex/bbm/bbm.sty) (/usr/share/texmf-texlive/tex/latex/jknapltx/mathrsfs.sty) (/usr/share/texmf-texlive/tex/latex/base/fontenc.sty (/usr/share/texmf-texlive/tex/latex/base/t1enc.def)) (/usr/share/texmf-texlive/tex/latex/pstricks/pstricks.sty (/usr/share/texmf-texlive/tex/generic/pstricks/pstricks.tex `PSTricks' v1.15 <2006/12/22> (tvz) (/usr/share/texmf-texlive/tex/generic/pstricks/pstricks.con)) (/usr/share/texmf/tex/latex/xcolor/xcolor.sty (/etc/texmf/tex/latex/config/color.cfg) (/usr/share/texmf-texlive/tex/latex/graphics/dvips.def) (/usr/share/texmf-texlive/tex/latex/graphics/dvipsnam.def))) (/usr/share/texmf-texlive/tex/latex/graphics/epsfig.sty (/usr/share/texmf-texlive/tex/latex/graphics/graphicx.sty (/usr/share/texmf-texlive/tex/latex/graphics/keyval.sty) (/usr/share/texmf-texlive/tex/latex/graphics/graphics.sty (/usr/share/texmf-texlive/tex/latex/graphics/trig.sty) (/etc/texmf/tex/latex/config/graphics.cfg)))) (/usr/share/texmf-texlive/tex/latex/pst-grad/pst-grad.sty (/usr/share/texmf-texlive/tex/generic/pst-grad/pst-grad.tex (/usr/share/texmf-texlive/tex/latex/xkeyval/pst-xkey.tex (/usr/share/texmf-texlive/tex/latex/xkeyval/xkeyval.sty (/usr/share/texmf-texlive/tex/latex/xkeyval/xkeyval.tex))) `pst-plot' v1.05, 2006/11/04 (tvz,dg,hv))) (/usr/share/texmf-texlive/tex/latex/pstricks/pst-plot.sty (/usr/share/texmf-texlive/tex/generic/pstricks/pst-plot.tex v97 patch 2, 1999/12/12 (/usr/share/texmf-texlive/tex/generic/multido/multido.tex v1.41, 2004/05/18 <tvz>))) (/usr/share/texmf-texlive/tex/generic/xypic/xy.sty (/usr/share/texmf-texlive/tex/generic/xypic/xy.tex Bootstrap'ing: catcodes, docmode, (/usr/share/texmf-texlive/tex/generic/xypic/xyrecat.tex) (/usr/share/texmf-texlive/tex/generic/xypic/xyidioms.tex)Xy-pic version 3.7 <1999/02/16> Copyright (c) 1991-1998 by Kristoffer H. Rose <krisrose@ens-lyon.fr> Xy-pic is free software: see the User's Guide for details.
Loading kernel: messages; fonts; allocations: state, direction, utility macros; pictures: \xy, positions, objects, decorations; kernel objects: directionals, circles, text; options; algorithms: directions, edges, connections; Xy-pic loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xyall.tex Xy-pic option: All features v.3.3 (/usr/share/texmf-texlive/tex/generic/xypic/xycurve.tex Xy-pic option: Curve and Spline extension v.3.7 curve, circles, loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xyframe.tex Xy-pic option: Frame and Bracket extension v.3.7 loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xycmtip.tex Xy-pic option: Computer Modern tip extension v.3.3 (/usr/share/texmf-texlive/tex/generic/xypic/xytips.tex Xy-pic option: More Tips extension v.3.3 loaded) loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xyline.tex Xy-pic option: Line styles extension v.3.6 loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xyrotate.tex Xy-pic option: Rotate and Scale extension v.3.3 loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xycolor.tex Xy-pic option: Colour extension v.3.3 loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xymatrix.tex Xy-pic option: Matrix feature v.3.4 loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xyarrow.tex Xy-pic option: Arrow and Path feature v.3.5 path, \ar, loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xygraph.tex Xy-pic option: Graph feature v.3.7 loaded) loaded) (/usr/share/texmf-texlive/tex/generic/xypic/xyknot.tex Xy-pic option: Knots and Links feature v.3.4 knots and links, loaded)) (/usr/share/texmf-texlive/tex/generic/xypic/xyarc.tex Xy-pic option: Circle, Ellipse, Arc feature v.3.4 circles, ellipses, elliptical arcs, loaded) (/usr/share/texmf-texlive/tex/latex/geometry/geometry.sty (/usr/share/texmf-texlive/tex/xelatex/xetexconfig/geometry.cfg)
Package geometry Warning: `lmargin' and `rmargin' result in NEGATIVE (-108.405p t). `width' should be shortened in length.
) (/usr/share/texmf-texlive/tex/latex/amsmath/amsmath.sty For additional information on amsmath, use the `?
option. (/usr/share/texmf-texlive/tex/latex/amsmath/amstext.sty (/usr/share/texmf-texlive/tex/latex/amsmath/amsgen.sty)) (/usr/share/texmf-texlive/tex/latex/amsmath/amsbsy.sty) (/usr/share/texmf-texlive/tex/latex/amsmath/amsopn.sty)) (/usr/share/texmf-texlive/tex/latex/amsfonts/amsfonts.sty) (/usr/share/texmf-texlive/tex/latex/amsfonts/amssymb.sty) (/usr/share/texmf-texlive/tex/latex/amscls/amsthm.sty) (/usr/share/texmf-texlive/tex/latex/setspace/setspace.sty Package: `setspace
6.7 <2000/12/01> ) (/usr/share/texmf-texlive/tex/latex/tools/verbatim.sty) (/usr/share/texmf/tex/latex/graphviz/graphviz.sty (/usr/share/texmf-texlive/tex/latex/psfrag/psfrag.sty)) (/usr/share/texmf/tex/latex/sagetex.sty Writing sage input file 3510964837723695379-16.0px.sage (./3510964837723695379-16.0px.sout)) (/usr/share/texmf-texlive/tex/latex/gnuplottex/gnuplottex.sty (/usr/share/texmf-texlive/tex/latex/base/latexsym.sty) (/usr/share/texmf-texlive/tex/latex/moreverb/moreverb.sty) (/usr/share/texmf-texlive/tex/latex/base/ifthen.sty)) (./3510964837723695379-16.0px.aux) (/usr/share/texmf-texlive/tex/latex/ucs/ucsencs.def) (/usr/share/texmf-texlive/tex/latex/jknapltx/ursfs.fd) (/usr/share/texmf-texlive/tex/latex/amsfonts/umsa.fd) (/usr/share/texmf-texlive/tex/latex/amsfonts/umsb.fd) (/usr/share/texmf-texlive/tex/latex/base/ulasy.fd) [1] (/usr/share/texmf-texlive/tex/latex/base/t1cmtt.fd)LaTeX Warning: Characters dropped after `\end{axiom}' on input line 125.
(/usr/share/texmf-texlive/tex/latex/ucs/data/uni-3.def) Missing $ inserted. <inserted text> $ l.128 macro Σ(x,i,n)==reduce(+,[x for i in n])
Missing $ inserted. <inserted text> $ l.128 macro Σ(x,i,n)==reduce(+,[x for i in n])
Missing $ inserted. <inserted text> $ l.130 macro Ξ(f,i,n)==[f for i in n]
Missing $ inserted. <inserted text> $ l.130 macro Ξ(f,i,n)==[f for i in n]
LaTeX Warning: Characters dropped after `\end{axiom}' on input line 134.
(/usr/share/texmf-texlive/tex/latex/ucs/data/uni-33.def) (/usr/share/texmf-texlive/tex/latex/bbm/ubbm.fd) (/usr/share/texmf-texlive/tex/latex/ucs/data/uni-468.def) Missing $ inserted. <inserted text> $ l.146 Λ:𝐋:=co(1) -- co-evaluation
Missing $ inserted. <inserted text> $ l.146 Λ:𝐋:=co(1) -- co-evaluation
LaTeX Warning: Characters dropped after `\end{axiom}' on input line 148.
Overfull \hbox (197.59087pt too wide) in paragraph at lines 154--154 []\T1/cmtt/m/n/12 B:$\U/rsfs/m/n/12 L$ \T1/cmtt/m/n/12 QQ := [monomial(1,[]),mo nomial(1,[1]),monomial(1,[2]),monomial(1,[3]),monomial(1,[1,2]),monomial(1,[1,3 ]),monomial(1,[2,3]),monomial(1,[1,2,3])][] Missing $ inserted. <inserted text> $ l.155 ...atrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)
Missing $ inserted. <inserted text> $ l.155 ...atrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)
(/usr/share/texmf-texlive/tex/latex/ucs/data/uni-4.def) Undefined control sequence. \u-default-1109 #1->\cyrdze
l.157 ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
Missing $ inserted. <inserted text> $ l.159 ...j*𝐝.k, i,1..dim), j,1..dim), k,1..dim)
Undefined control sequence. \u-default-1109 #1->\cyrdze
l.159 ...j*𝐝.k, i,1..dim), j,1..dim), k,1..dim)
Missing $ inserted. <inserted text> $ l.159 ...j*𝐝.k, i,1..dim), j,1..dim), k,1..dim)
Missing $ inserted. <inserted text> $ l.160 ...�((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)
Missing $ inserted. <inserted text> $ l.160 ...�((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)
LaTeX Warning: Characters dropped after `\end{axiom}' on input line 162.
LaTeX Warning: Characters dropped after `\end{axiom}' on input line 165.
[2] [3] Missing $ inserted. <inserted text> $ l.169 a:=Σ(sb('a,[i])*𝐞.i, i,1..dim)
TeX capacity exceeded, sorry [main memory size=1500000].
->\leavevmode \kern \z@ \char `\
l.169 a:=Σ(sb('a,[i])*𝐞.i, i,1..dim)Output written on 3510964837723695379-16.0px.dvi (3 pages, 3040 bytes). Transcript written on 3510964837723695379-16.0px.log.