Error: export HOME=/var/zope2/var/LatexWiki; ulimit -t 600; export LD_LIBRARY_PATH=/usr/local/lib/fricas/target/x86_64-linux-gnu/lib; LANG=en_US.UTF-8 /usr/local/lib/fricas/target/x86_64-linux-gnu/bin/fricas -nosman < /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/7701307392394560546-25px.axm
Heap exhausted during garbage collection: 0 bytes available, 16 requested.
        Immobile Object Counts
 Gen layout fdefn symbol   code  Boxed   Cons    Raw   Code  SmMix  Mixed  LgRaw LgCode  LgMix Waste%       Alloc        Trig   Dirty GCs Mem-age
  2      0      0      0      0      3  10478      1      0      0      1      0      0      0    0.9   340512912   202181376   10483   1  1.3689
  3      0      0      0      0      1   6759      1      0      0      0      0      0      0    0.8   219689072     6291456    6675   0  0.0126
  4      0   4665      0   4894    113    909     78      0     17      9      0      0      0    1.3    36422448     2000000      79   0  0.0000
  5      0      0      0      0      0      0      0      0      0      0      0      0      0    0.0           0     2000000       0   0  0.0000
  6    749  24064  26788  24347    448    176     63      5     48     16      0      0     74    2.4    26541936     2000000      18   0  0.0000
Tot    749  28729  26788  29241    565  18322    143      5     65     26      0      0     74    1.0   623166368 [99.0% of 629145600 max]
GC control variables:
   GC-INHIBIT = true
   GC-PENDING = true
   STOP-FOR-GC-PENDING = false
fatal error encountered in SBCL pid 1788095 tid 1788095:
Heap exhausted, game over.
Error opening /dev/tty: No such device or address
Checking for foreign routines
FRICAS="/usr/local/lib/fricas/target/x86_64-linux-gnu"
spad-lib="/usr/local/lib/fricas/target/x86_64-linux-gnu/lib/libspad.so"
foreign routines found
openServer result -2
                       FriCAS Computer Algebra System 
             Version: FriCAS 1.3.12 built with sbcl 2.2.9.debian
                  Timestamp: Sat  7 Jun 23:54:49 CEST 2025
-----------------------------------------------------------------------------
   Issue )copyright to view copyright notices.
   Issue )summary for a summary of useful system commands.
   Issue )quit to leave FriCAS and return to shell.
-----------------------------------------------------------------------------
(1) -> (1) -> (1) -> (1) -> (1) -> (1) -> Scalar := Expression Integer
$$
Expression 
\left(
{Integer} 
\right)
\leqno(1)
$$
                                                                   Type: Type
vect(x:List Scalar):Matrix Scalar == matrix map(y+->[y],x)
   Function declaration vect : List(Expression(Integer)) -> Matrix(
      Expression(Integer)) has been added to workspace.
                                                                   Type: Void
vect [a0,a1,a2,a3]
   Compiling function vect with type List(Expression(Integer)) -> 
      Matrix(Expression(Integer)) 
$$
\left[
\begin{array}{c}
a0 \ 
a1 \ 
a2 \ 
a3 
\end{array}
\right]
\leqno(3)
$$
                                            Type: Matrix(Expression(Integer))
(4) -> ID:=diagonalMatrix([1,1,1,1])
$$
\left[
\begin{array}{cccc}
1 & 0 & 0 & 0 \ 
0 & 1 & 0 & 0 \ 
0 & 0 & 1 & 0 \ 
0 & 0 & 0 & 1 
\end{array}
\right]
\leqno(4)
$$
                                                        Type: Matrix(Integer)
(5) -> htrigs2exp == rule
  cosh(a) == (exp(a)+exp(-a))/2
  sinh(a) == (exp(a)-exp(-a))/2
                                                                   Type: Void
sinhcosh == rule
  ?cexp(a)+?cexp(-a) == 2ccosh(a)
  ?cexp(a)-?cexp(-a) == 2csinh(a)
  ?cexp(a-b)+?cexp(b-a) == 2ccosh(a-b)
  ?cexp(a-b)-?cexp(b-a) == 2csinh(a-b)
                                                                   Type: Void
expandhtrigs == rule
  cosh(:x+y) == sinh(x)sinh(y)+cosh(x)cosh(y)
  sinh(:x+y) == cosh(x)sinh(y)+sinh(x)cosh(y)
  cosh(2x) == 2cosh(x)^2-1
  sinh(2x) == 2sinh(x)*cosh(x)
                                                                   Type: Void
expandhtrigs2 == rule
  cosh(2x+2y) == 2cosh(x+y)^2-1
  sinh(2x+2y) == 2sinh(x+y)cosh(x+y)
  cosh(2x-2y) == 2cosh(x-y)^2-1
  sinh(2x-2y) == 2sinh(x-y)cosh(x-y)
                                                                   Type: Void
Simplify(x:Scalar):Scalar == htrigs sinhcosh simplify htrigs2exp x
   Function declaration Simplify : Expression(Integer) -> Expression(
      Integer) has been added to workspace.
                                                                   Type: Void
possible(x)==subst(x, map(y+->(y=(random(100) - random(100))),variables x) )
                                                                   Type: Void
is?(eq:Equation Scalar):Boolean == (Simplify(lhs(eq)-rhs(eq))=0)::Boolean
   Function declaration is? : Equation(Expression(Integer)) -> Boolean 
      has been added to workspace.
                                                                   Type: Void
Is?(eq:Equation(Matrix(Scalar))):Boolean == 
(map(Simplify,lhs(eq)-rhs(eq)) :: Matrix Expression AlgebraicNumber = 
zero(nrows(lhs(eq)),ncols(lhs(eq)))$Matrix Expression AlgebraicNumber )::Boolean
   Function declaration Is? : Equation(Matrix(Expression(Integer))) -> 
      Boolean has been added to workspace.
                                                                   Type: Void
(13) -> G:=diagonalMatrix [-1,1,1,1]
$$
\left[
\begin{array}{cccc}
-1 & 0 & 0 & 0 \ 
0 & 1 & 0 & 0 \ 
0 & 0 & 1 & 0 \ 
0 & 0 & 0 & 1 
\end{array}
\right]
\leqno(13)
$$
                                                        Type: Matrix(Integer)
(14) -> g(x) == transpose(x)*G
                                                                   Type: Void
g(vect [a0,a1,a2,a3])
   Compiling function g with type Matrix(Expression(Integer)) -> Matrix
      (Expression(Integer)) 
$$
\left[
\begin{array}{cccc}
-a0 & a1 & a2 & a3 
\end{array}
\right]
\leqno(15)
$$
                                            Type: Matrix(Expression(Integer))
(16) -> dot(x,y) == (g(x)*y)::Scalar 
                                                                   Type: Void
dot(vect [a0,a1,a2,a3], vect [b0,b1,b2,b3])
   Compiling function dot with type (Matrix(Expression(Integer)), 
      Matrix(Expression(Integer))) -> Expression(Integer) 
$$
{a3 \  b3}+{a2 \  b2}+{a1 \  b1} -{a0 \  b0} 
\leqno(17)
$$
                                                    Type: Expression(Integer)
(18) -> tensor(x,y) == x*g(y)
                                                                   Type: Void
tensor(vect [a0,a1,a2,a3], vect [b0,b1,b2,b3])
   Compiling function tensor with type (Matrix(Expression(Integer)), 
      Matrix(Expression(Integer))) -> Matrix(Expression(Integer)) 
$$
\left[
\begin{array}{cccc}
-{a0 \  b0} & {a0 \  b1} & {a0 \  b2} & {a0 \  b3} \ 
-{a1 \  b0} & {a1 \  b1} & {a1 \  b2} & {a1 \  b3} \ 
-{a2 \  b0} & {a2 \  b1} & {a2 \  b2} & {a2 \  b3} \ 
-{a3 \  b0} & {a3 \  b1} & {a3 \  b2} & {a3 \  b3} 
\end{array}
\right]
\leqno(19)
$$
                                            Type: Matrix(Expression(Integer))
(20) -> P:=vect [sqrt(p1^2+p2^2+p3^2+1),-p1,-p2,-p3];
                                            Type: Matrix(Expression(Integer))
dot(P,P)
$$
-1 
\leqno(21)
$$
                                                    Type: Expression(Integer)
Q:=vect [sqrt(q1^2+q2^2+q3^2+1),-q1,-q2,-q3];
                                            Type: Matrix(Expression(Integer))
R:=vect [sqrt(r1^2+r2^2+r3^2+1),-r1,-r2,-r3];
                                            Type: Matrix(Expression(Integer))
S:=1/sqrt(1-s1^2-s2^2-s3^2)*vect [1,-s1,-s2,-s3]
$$
\left[
\begin{array}{c}
{\frac{1}{{\sqrt {{-{{s3} \sp {2}} -{{s2} \sp {2}} -{{s1} \sp {2}}+1}}}}} \ 
-{\frac{s1}{{\sqrt {{-{{s3} \sp {2}} -{{s2} \sp {2}} -{{s1} \sp {2}}+1}}}}} \ 
-{\frac{s2}{{\sqrt {{-{{s3} \sp {2}} -{{s2} \sp {2}} -{{s1} \sp {2}}+1}}}}} \ 
-{\frac{s3}{{\sqrt {{-{{s3} \sp {2}} -{{s2} \sp {2}} -{{s1} \sp {2}}+1}}}}} 
\end{array}
\right]
\leqno(24)
$$
                                            Type: Matrix(Expression(Integer))
dot(S,S)
$$
-1 
\leqno(25)
$$
                                                    Type: Expression(Integer)
T:=1/sqrt(1-t1^2-t2^2-t3^2)*vect [1,-t1,-t2,-t3]
$$
\left[
\begin{array}{c}
{\frac{1}{{\sqrt {{-{{t3} \sp {2}} -{{t2} \sp {2}} -{{t1} \sp {2}}+1}}}}} \ 
-{\frac{t1}{{\sqrt {{-{{t3} \sp {2}} -{{t2} \sp {2}} -{{t1} \sp {2}}+1}}}}} \ 
-{\frac{t2}{{\sqrt {{-{{t3} \sp {2}} -{{t2} \sp {2}} -{{t1} \sp {2}}+1}}}}} \ 
-{\frac{t3}{{\sqrt {{-{{t3} \sp {2}} -{{t2} \sp {2}} -{{t1} \sp {2}}+1}}}}} 
\end{array}
\right]
\leqno(26)
$$
                                            Type: Matrix(Expression(Integer))
U:=vect [cosh(u),sinh(u),0,0]
$$
\left[
\begin{array}{c}
{\cosh 
\left(
{u} 
\right)}
\ 
{\sinh 
\left(
{u} 
\right)}
\ 
0 \ 
0 
\end{array}
\right]
\leqno(27)
$$
                                            Type: Matrix(Expression(Integer))
simplify dot(U,U)
$$
-1 
\leqno(28)
$$
                                                    Type: Expression(Integer)
V:=vect [cosh(v),sinh(v),0,0]
$$
\left[
\begin{array}{c}
{\cosh 
\left(
{v} 
\right)}
\ 
{\sinh 
\left(
{v} 
\right)}
\ 
0 \ 
0 
\end{array}
\right]
\leqno(29)
$$
                                            Type: Matrix(Expression(Integer))
Simplify dot(U,V)
   Compiling body of rule htrigs2exp to compute value of type Ruleset(
      Integer,Integer,Expression(Integer)) 
   Compiling body of rule sinhcosh to compute value of type Ruleset(
      Integer,Integer,Expression(Integer)) 
   Compiling function Simplify with type Expression(Integer) -> 
      Expression(Integer) 
$$
-{\cosh 
\left(
{{v -u}} 
\right)}
\leqno(30)
$$
                                                    Type: Expression(Integer)
W:=vect [cosh(w),0,sinh(w),0]
$$
\left[
\begin{array}{c}
{\cosh 
\left(
{w} 
\right)}
\ 
0 \ 
{\sinh 
\left(
{w} 
\right)}
\ 
0 
\end{array}
\right]
\leqno(31)
$$
                                            Type: Matrix(Expression(Integer))
Simplify dot(U,W)
$$
\frac{{-{\cosh 
\left(
{{w+u}} 
\right)}
-{\cosh 
\left(
{{w -u}} 
\right)}}}{2}
\leqno(32)
$$
                                                    Type: Expression(Integer)
(33) -> vect [1,0,0,0]
$$
\left[
\begin{array}{c}
1 \ 
0 \ 
0 \ 
0 
\end{array}
\right]
\leqno(33)
$$
                                            Type: Matrix(Expression(Integer))
dot(%,%)
$$
-1 
\leqno(34)
$$
                                                    Type: Expression(Integer)
(35) -> ω(P,Q)==-P/dot(P,Q)-Q
                                                                   Type: Void
ω(P,Q)
   Compiling function ω with type (Matrix(Expression(Integer)), Matrix(
      Expression(Integer))) -> Matrix(Expression(Integer)) 
$$
\left[
\begin{array}{c}
{\frac{{{{\left( {p3 \  q3}+{p2 \  q2}+{p1 \  q1} 
\right)}
\  {\sqrt {{{{q3} \sp {2}}+{{q2} \sp {2}}+{{q1} \sp {2}}+1}}}}+{{\left( 
-{{q3} \sp {2}} -{{q2} \sp {2}} -{{q1} \sp {2}} 
\right)}
\  {\sqrt {{{{p3} \sp {2}}+{{p2} \sp {2}}+{{p1} \sp {2}}+1}}}}}}{{{{\sqrt 
{{{{p3} \sp {2}}+{{p2} \sp {2}}+{{p1} \sp {2}}+1}}} \  {\sqrt {{{{q3} \sp 
{2}}+{{q2} \sp {2}}+{{q1} \sp {2}}+1}}}} -{p3 \  q3} -{p2 \  q2} -{p1 \  
q1}}}} \ 
{\frac{{{q1 \  {\sqrt {{{{p3} \sp {2}}+{{p2} \sp {2}}+{{p1} \sp {2}}+1}}} \  
{\sqrt {{{{q3} \sp {2}}+{{q2} \sp {2}}+{{q1} \sp {2}}+1}}}} -{p3 \  q1 \  q3} 
-{p2 \  q1 \  q2} -{p1 \  {{q1} \sp {2}}} -p1}}{{{{\sqrt {{{{p3} \sp 
{2}}+{{p2} \sp {2}}+{{p1} \sp {2}}+1}}} \  {\sqrt {{{{q3} \sp {2}}+{{q2} \sp 
{2}}+{{q1} \sp {2}}+1}}}} -{p3 \  q3} -{p2 \  q2} -{p1 \  q1}}}} \ 
{\frac{{{q2 \  {\sqrt {{{{p3} \sp {2}}+{{p2} \sp {2}}+{{p1} \sp {2}}+1}}} \  
{\sqrt {{{{q3} \sp {2}}+{{q2} \sp {2}}+{{q1} \sp {2}}+1}}}} -{p3 \  q2 \  q3} 
-{p2 \  {{q2} \sp {2}}} -{p1 \  q1 \  q2} -p2}}{{{{\sqrt {{{{p3} \sp 
{2}}+{{p2} \sp {2}}+{{p1} \sp {2}}+1}}} \  {\sqrt {{{{q3} \sp {2}}+{{q2} \sp 
{2}}+{{q1} \sp {2}}+1}}}} -{p3 \  q3} -{p2 \  q2} -{p1 \  q1}}}} \ 
{\frac{{{q3 \  {\sqrt {{{{p3} \sp {2}}+{{p2} \sp {2}}+{{p1} \sp {2}}+1}}} \  
{\sqrt {{{{q3} \sp {2}}+{{q2} \sp {2}}+{{q1} \sp {2}}+1}}}} -{p3 \  {{q3} \sp 
{2}}}+{{\left( -{p2 \  q2} -{p1 \  q1} 
\right)}
\  q3} -p3}}{{{{\sqrt {{{{p3} \sp {2}}+{{p2} \sp {2}}+{{p1} \sp {2}}+1}}} \  
{\sqrt {{{{q3} \sp {2}}+{{q2} \sp {2}}+{{q1} \sp {2}}+1}}}} -{p3 \  q3} -{p2 
\  q2} -{p1 \  q1}}}} 
\end{array}
\right]
\leqno(36)
$$
                                            Type: Matrix(Expression(Integer))
ω(S,T)
$$
\left[
\begin{array}{c}
{\frac{{{{t3} \sp {2}} -{s3 \  t3}+{{t2} \sp {2}} -{s2 \  t2}+{{t1} \sp {2}} 
-{s1 \  t1}}}{{{\left( {s3 \  t3}+{s2 \  t2}+{s1 \  t1} -1 
\right)}
\  {\sqrt {{-{{t3} \sp {2}} -{{t2} \sp {2}} -{{t1} \sp {2}}+1}}}}}} \ 
{\frac{{-{s1 \  {{t3} \sp {2}}}+{s3 \  t1 \  t3} -{s1 \  {{t2} \sp {2}}}+{s2 
\  t1 \  t2} -t1+s1}}{{{\left( {s3 \  t3}+{s2 \  t2}+{s1 \  t1} -1 
\right)}
\  {\sqrt {{-{{t3} \sp {2}} -{{t2} \sp {2}} -{{t1} \sp {2}}+1}}}}}} \ 
{\frac{{-{s2 \  {{t3} \sp {2}}}+{s3 \  t2 \  t3}+{{\left( {s1 \  t1} -1 
\right)}
\  t2} -{s2 \  {{t1} \sp {2}}}+s2}}{{{\left( {s3 \  t3}+{s2 \  t2}+{s1 \  t1} 
-1 
\right)}
\  {\sqrt {{-{{t3} \sp {2}} -{{t2} \sp {2}} -{{t1} \sp {2}}+1}}}}}} \ 
{\frac{{{{\left( {s2 \  t2}+{s1 \  t1} -1 
\right)}
\  t3} -{s3 \  {{t2} \sp {2}}} -{s3 \  {{t1} \sp {2}}}+s3}}{{{\left( {s3 \  
t3}+{s2 \  t2}+{s1 \  t1} -1 
\right)}
\  {\sqrt {{-{{t3} \sp {2}} -{{t2} \sp {2}} -{{t1} \sp {2}}+1}}}}}} 
\end{array}
\right]
\leqno(37)
$$
                                            Type: Matrix(Expression(Integer))
(38) -> map(x+->Simplify x,ω(U,V))
$$
\left[
\begin{array}{c}
{\frac{{-{\cosh 
\left(
{{{2 \  v} -u}} 
\right)}+{\cosh
\left(
{u} 
\right)}}}{{2
\  {\cosh 
\left(
{{v -u}} 
\right)}}}}
\ 
{\frac{{-{\sinh 
\left(
{{{2 \  v} -u}} 
\right)}+{\sinh
\left(
{u} 
\right)}}}{{2
\  {\cosh 
\left(
{{v -u}} 
\right)}}}}
\ 
0 \ 
0 
\end{array}
\right]
\leqno(38)
$$
                                            Type: Matrix(Expression(Integer))
vect [cosh(u)/cosh(u-v)-cosh(v),sinh(u)/cosh(u-v)-sinh(v),0,0]
$$
\left[
\begin{array}{c}
{\frac{{-{{\cosh 
\left(
{{v -u}} 
\right)}
\  {\cosh 
\left(
{v} 
\right)}}+{\cosh
\left(
{u} 
\right)}}}{{\cosh
\left(
{{v -u}} 
\right)}}}
\ 
{\frac{{-{{\cosh 
\left(
{{v -u}} 
\right)}
\  {\sinh 
\left(
{v} 
\right)}}+{\sinh
\left(
{u} 
\right)}}}{{\cosh
\left(
{{v -u}} 
\right)}}}
\ 
0 \ 
0 
\end{array}
\right]
\leqno(39)
$$
                                            Type: Matrix(Expression(Integer))
Is?(% = ω(U,V))
   Compiling function Is? with type Equation(Matrix(Expression(Integer)
      )) -> Boolean 
$$
true 
\leqno(40)
$$
                                                                Type: Boolean
map(x+->Simplify x,ω(U,W))
$$
\left[
\begin{array}{c}
{\frac{{-{\cosh 
\left(
{{2 \  w}} 
\right)}+1}}{{2
\  {\cosh 
\left(
{w} 
\right)}}}}
\ 
{\frac{{2 \  {\sinh 
\left(
{u} 
\right)}}}{{{\cosh
\left(
{{w+u}} 
\right)}+{\cosh
\left(
{{w -u}} 
\right)}}}}
\ 
-{\sinh 
\left(
{w} 
\right)}
\ 
0 
\end{array}
\right]
\leqno(41)
$$
                                            Type: Matrix(Expression(Integer))
(42) -> dot(ω(P,vect [1,0,0,0]),ω(P,vect [1,0,0,0]))
$$
\frac{{{{p3} \sp {2}}+{{p2} \sp {2}}+{{p1} \sp {2}}}}{{{{p3} \sp {2}}+{{p2} 
\sp {2}}+{{p1} \sp {2}}+1}} 
\leqno(42)
$$
                                                    Type: Expression(Integer)
(43) -> dot(P,ω(Q,P))
$$
0 
\leqno(43)
$$
                                                    Type: Expression(Integer)
possible dot(ω(Q,P),ω(Q,P))::EXPR Float
   Compiling function possible with type Expression(Integer) -> 
      Expression(Integer) 
$$
0.9999995659\_3941083651 
\leqno(44)
$$
                                                      Type: Expression(Float)
dot(Q,ω(P,Q))
$$
0 
\leqno(45)
$$
                                                    Type: Expression(Integer)
possible dot(ω(P,Q),ω(P,Q))::EXPR Float
$$
0.9999994628\_9493005142 
\leqno(46)
$$
                                                      Type: Expression(Float)
(47) -> ω(vect [u0,u1,u2,u3],vect [1,0,0,0])
$$
\left[
\begin{array}{c}
0 \ 
{\frac{u1}{u0}} \ 
{\frac{u2}{u0}} \ 
{\frac{u3}{u0}} 
\end{array}
\right]
\leqno(47)
$$
                                            Type: Matrix(Expression(Integer))
ω(R,vect [1,0,0,0])
$$
\left[
\begin{array}{c}
0 \ 
-{\frac{r1}{{\sqrt {{{{r3} \sp {2}}+{{r2} \sp {2}}+{{r1} \sp {2}}+1}}}}} \ 
-{\frac{r2}{{\sqrt {{{{r3} \sp {2}}+{{r2} \sp {2}}+{{r1} \sp {2}}+1}}}}} \ 
-{\frac{r3}{{\sqrt {{{{r3} \sp {2}}+{{r2} \sp {2}}+{{r1} \sp {2}}+1}}}}} 
\end{array}
\right]
\leqno(48)
$$
                                            Type: Matrix(Expression(Integer))
ω(S,vect [1,0,0,0])
$$
\left[
\begin{array}{c}
0 \ 
-s1 \ 
-s2 \ 
-s3 
\end{array}
\right]
\leqno(49)
$$
                                            Type: Matrix(Expression(Integer))
map(Simplify, ω(U,vect [1,0,0,0]))
$$
\left[
\begin{array}{c}
0 \ 
{\frac{{\sinh 
\left(
{u} 
\right)}}{{\cosh
\left(
{u} 
\right)}}}
\ 
0 \ 
0 
\end{array}
\right]
\leqno(50)
$$
                                            Type: Matrix(Expression(Integer))
(51) -> ω(vect [1,0,0,0],S)
$$
\left[
\begin{array}{c}
{\frac{{-{{s3} \sp {2}} -{{s2} \sp {2}} -{{s1} \sp {2}}}}{{\sqrt {{-{{s3} \sp 
{2}} -{{s2} \sp {2}} -{{s1} \sp {2}}+1}}}}} \ 
{\frac{s1}{{\sqrt {{-{{s3} \sp {2}} -{{s2} \sp {2}} -{{s1} \sp {2}}+1}}}}} \ 
{\frac{s2}{{\sqrt {{-{{s3} \sp {2}} -{{s2} \sp {2}} -{{s1} \sp {2}}+1}}}}} \ 
{\frac{s3}{{\sqrt {{-{{s3} \sp {2}} -{{s2} \sp {2}} -{{s1} \sp {2}}+1}}}}} 
\end{array}
\right]
\leqno(51)
$$
                                            Type: Matrix(Expression(Integer))
ω(vect [1,0,0,0],R)
$$
\left[
\begin{array}{c}
{\frac{{-{{r3} \sp {2}} -{{r2} \sp {2}} -{{r1} \sp {2}}}}{{\sqrt {{{{r3} \sp 
{2}}+{{r2} \sp {2}}+{{r1} \sp {2}}+1}}}}} \ 
r1 \ 
r2 \ 
r3 
\end{array}
\right]
\leqno(52)
$$
                                            Type: Matrix(Expression(Integer))
is?(dot(ω(P,Q),ω(P,Q))=dot(ω(Q,P),ω(Q,P)))
   Compiling function is? with type Equation(Expression(Integer)) -> 
      Boolean 
$$
true 
\leqno(53)
$$
                                                                Type: Boolean
(54) -> L(P,Q) == ID + tensor(P+Q,P+Q)/(1-dot(P,Q)) - 2*tensor(P,Q)
                                                                   Type: Void
Is?(L(P,P) = ID)
   Compiling function L with type (Matrix(Expression(Integer)), Matrix(
      Expression(Integer))) -> Matrix(Expression(Integer)) 
$$
true 
\leqno(55)
$$
                                                                Type: Boolean
Is?(L(P,Q)*L(Q,P) = ID)
$$
true 
\leqno(56)
$$
                                                                Type: Boolean
Is?(L(P,Q)*Q=P)
$$
true 
\leqno(57)
$$
                                                                Type: Boolean
Is?(L(P,Q)*ω(P,Q) = -ω(Q,P))
$$
true 
\leqno(58)
$$
                                                                Type: Boolean
(59) -> B(P,Q,X) == ID -                                
( tensor(                                       
    2X, dot(P-Q,P-Q)X - 2dot(X,P)(P-Q)      
  ) +                                           
  tensor(                                       _
    P-Q, 2dot(X,X)(P-Q)+4dot(X,Q)X          
  )                                             
) / (                                           _
      dot(X,X)dot(P-Q,P-Q)+4dot(X,P)*dot(X,Q) _
    )
                                                                   Type: Void
Is?(B(P,P,R) = ID)
   Compiling function B with type (Matrix(Expression(Integer)), Matrix(
      Expression(Integer)), Matrix(Expression(Integer))) -> Matrix(
      Expression(Integer)) 
$$
true 
\leqno(60)
$$
                                                                Type: Boolean
Is?(B(P,Q,R)*B(Q,P,R) = ID)
$$
true 
\leqno(61)
$$
                                                                Type: Boolean
Is?(B(P,Q,R)*P=Q)
$$
true 
\leqno(62)
$$
                                                                Type: Boolean
--Is?(B(P,Q,R)*ω(P,Q) = -ω(Q,P))
Is?(L(P,Q)=B(Q,P,qQ+pP))
$$
true 
\leqno(63)
$$
                                                                Type: Boolean
(64) -> map(x+->simplify expandhtrigs2 Simplify x, L(U,V))
   Compiling body of rule expandhtrigs2 to compute value of type 
      Ruleset(Integer,Integer,Expression(Integer)) 
$$
\left[
\begin{array}{cccc}
{\cosh 
\left(
{{v -u}} 
\right)}
& -{\sinh 
\left(
{{v -u}} 
\right)}
& 0 & 0 \ 
-{\sinh 
\left(
{{v -u}} 
\right)}
& {\cosh 
\left(
{{v -u}} 
\right)}
& 0 & 0 \ 
0 & 0 & 1 & 0 \ 
0 & 0 & 0 & 1 
\end{array}
\right]
\leqno(64)
$$
                                            Type: Matrix(Expression(Integer))
map(x+->simplify expandhtrigs expandhtrigs2 Simplify x, L(U,W))
   Compiling body of rule expandhtrigs to compute value of type Ruleset
      (Integer,Integer,Expression(Integer)) 
$$
\left[
\begin{array}{cccc}
{\frac{{{{\left( {2 \  {{{\cosh 
\left(
{u} 
\right)}}
\sp {2}}} -1 
\right)}
\  {{{\cosh 
\left(
{w} 
\right)}}
\sp {2}}}+{{\cosh 
\left(
{u} 
\right)}
\  {\cosh 
\left(
{w} 
\right)}}
-{{{\cosh 
\left(
{u} 
\right)}}
\sp {2}}+1}}{{{{\cosh 
\left(
{u} 
\right)}
\  {\cosh 
\left(
{w} 
\right)}}+1}}}
& {\frac{{{\left( {\cosh 
\left(
{w} 
\right)}+{\cosh
\left(
{u} 
\right)}
\right)}
\  {\sinh 
\left(
{u} 
\right)}}}{{{{\cosh
\left(
{u} 
\right)}
\  {\cosh 
\left(
{w} 
\right)}}+1}}}
& {\frac{{{\left( {{\left( -{2 \  {{{\cosh 
\left(
{u} 
\right)}}
\sp {2}}}+1 
\right)}
\  {\cosh 
\left(
{w} 
\right)}}
-{\cosh 
\left(
{u} 
\right)}
\right)}
\  {\sinh 
\left(
{w} 
\right)}}}{{{{\cosh
\left(
{u} 
\right)}
\  {\cosh 
\left(
{w} 
\right)}}+1}}}
& 0 \ 
{\frac{{{\left( {2 \  {\cosh 
\left(
{u} 
\right)}
\  {{{\cosh 
\left(
{w} 
\right)}}
\sp {2}}}+{\cosh 
\left(
{w} 
\right)}
-{\cosh 
\left(
{u} 
\right)}
\right)}
\  {\sinh 
\left(
{u} 
\right)}}}{{{{\cosh
\left(
{u} 
\right)}
\  {\cosh 
\left(
{w} 
\right)}}+1}}}
& {\frac{{{{\cosh 
\left(
{u} 
\right)}
\  {\cosh 
\left(
{w} 
\right)}}+{{{\cosh
\left(
{u} 
\right)}}
\sp {2}}}}{{{{\cosh 
\left(
{u} 
\right)}
\  {\cosh 
\left(
{w} 
\right)}}+1}}}
& {\frac{{{\left( -{2 \  {\cosh 
\left(
{u} 
\right)}
\  {\cosh 
\left(
{w} 
\right)}}
-1 
\right)}
\  {\sinh 
\left(
{u} 
\right)}
\  {\sinh 
\left(
{w} 
\right)}}}{{{{\cosh
\left(
{u} 
\right)}
\  {\cosh 
\left(
{w} 
\right)}}+1}}}
& 0 \ 
{\frac{{{\left( -{\cosh 
\left(
{w} 
\right)}
-{\cosh 
\left(
{u} 
\right)}
\right)}
\  {\sinh 
\left(
{w} 
\right)}}}{{{{\cosh
\left(
{u} 
\right)}
\  {\cosh 
\left(
{w} 
\right)}}+1}}}
& {\frac{{{\sinh 
\left(
{u} 
\right)}
\  {\sinh 
\left(
{w} 
\right)}}}{{{{\cosh
\left(
{u} 
\right)}
\  {\cosh 
\left(
{w} 
\right)}}+1}}}
& {\frac{{{{{\cosh 
\left(
{w} 
\right)}}
\sp {2}}+{{\cosh 
\left(
{u} 
\right)}
\  {\cosh 
\left(
{w} 
\right)}}}}{{{{\cosh
\left(
{u} 
\right)}
\  {\cosh 
\left(
{w} 
\right)}}+1}}}
& 0 \ 
0 & 0 & 0 & 1 
\end{array}
\right]
\leqno(65)
$$
                                            Type: Matrix(Expression(Integer))
(66) -> Is?(L(R,P)*L(P,Q) = L(R,Q))
$$
false 
\leqno(66)
$$
                                                                Type: Boolean
RQ:=aR+bQ;
                                            Type: Matrix(Expression(Integer))
rq:=solve(dot(RQ,RQ)=-1,b); #rq
$$
2 
\leqno(68)
$$
                                                        Type: PositiveInteger
RQ1:=eval(RQ,rq.1);
                                            Type: Matrix(Expression(Integer))
dot(RQ1,RQ1)
$$
-1 
\leqno(70)
$$
                                                    Type: Expression(Integer)
Is?(L(R,RQ1)*L(RQ1,Q) = L(R,Q))
$$
true 
\leqno(71)
$$
                                                                Type: Boolean
RQ2:=eval(RQ,rq.2);
                                            Type: Matrix(Expression(Integer))
Is?(RQ1=RQ2)
$$
false 
\leqno(73)
$$
                                                                Type: Boolean
dot(RQ2,RQ2)
$$
-1 
\leqno(74)
$$
                                                    Type: Expression(Integer)
Is?(L(R,RQ2)*L(RQ2,Q) = L(R,Q))
$$
true 
\leqno(75)
$$
                                                                Type: Boolean
(76) -> LRPQ := L(R,P)*L(P,Q);
                                            Type: Matrix(Expression(Integer))
Is?(LRPQQ = L(R,Q)Q)
$$
true 
\leqno(77)
$$
                                                                Type: Boolean
is?(dot(LRPQ*ω(S,Q),LRPQ*ω(S,Q))=dot(L(R,Q)*ω(S,Q),L(R,Q)*ω(S,Q)))
Welcome to LDB, a low-level debugger for the Lisp runtime environment.
(GC in progress, oldspace=2, newspace=3)
ldb>