login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxFORMAN revision 1 of 1

1
Editor: pagani
Time: 2018/07/16 21:33:06 GMT+0
Note:

changed:
-
\begin{spad}
)abbrev package FORMAN FormalManipulations
++ Author: Kurt Pagani
++ Date Created: Tue Jun 19 19:09:16 CEST 2018
++ License: BSD
++ References:
++ Description:
++   Interactive Computer Manipulation of Formal Sums
++   (Thesis format: Monograph) by Nivedita Patil
++   Graduate Program in Computer Science
++     A thesis submitted in partial fulfillment of the requirements for the 
++     degree of Master of Science
++     The School of Graduate and Postdoctoral Studies
++     The University of Western Ontario
++     London, Ontario, Canada, (C) Nivedita Patil 2010
++   http://www.csd.uwo.ca/~watt/home/students/theses/NPatil2010-msc.pdf
++
++ Abstract:
++ The goal of the thesis is to explore how computer algebra systems can 
++ be augmented to allow user-guided transformation and simplification of 
++ expressions involving symbolic summation. Mathematical expressions 
++ represented as trees are one of the data objects of computer algebra 
++ systems. By accessing and manipulating these data objects we can simplify 
++ and transform expressions involving symbolic summation. To choose what 
++ transformations to be performed is under the discretion of the user. We
++ present a conceptual framework to perform transformations on expressions 
++ involving symbolic summation. This is done by creating a set of library 
++ functions for interactive manipulation of formal sums. We base our design 
++ on the properties of summation. This idea is also extended to other 
++ associative operators such as product and definite integral.
++
++ Keywords: 
++   Formal Sums, Computer Algebra System, Associative Operators.
++
FormalManipulations(R) : Exports == Implementation where
  
  R:Join(Comparable,IntegralDomain)
  X ==> Expression R
  PI ==> PositiveInteger
  UK ==> Union(Kernel X,"failed")
  KX ==> Kernel X
  SX ==> Segment X
  SBX ==> SegmentBinding X
  --PINT   ==> Polynomial(Integer)
  --SBPINT ==> SegmentBinding(PINT)
  
  Exports ==  with
    
    splitOp : (X,X) -> X
    multiplyOp : (X,X) -> X
    splitFunctions : X -> X 
    takeNTermsHigh : (X,X) -> X
    takeNTermsLow : (X,X) -> X
    shiftNTerms : (X,X) -> X
    splitTermsEvenOdd : X -> X
    reverseOrder : X -> X 
    --splitSum : (X,X) -> X
    --coerce : % -> OutputForm
	
	
  Implementation ==  add 
  
    kernelHandler(x) ==>  -- macro
      mk:UK:=mainKernel(x)
      if mk case KX then K:KX:=mk else return x
      A:List X:=argument K 
      v:Symbol:=retract(A.3)@Symbol
   
    splitSum(x:X,s:X):X ==
      kernelHandler(x)
      S1:=summation(subst(A.1,A.2=A.3),equation(v,segment(A.4,s)$SX)$SBX)
      S2:=summation(subst(A.1,A.2=A.3),equation(v,segment(s+1,A.5)$SX)$SBX)
      S1+S2


    multiplySum(x:X,s:X):X ==
      kernelHandler(x) 
      summation(s*subst(A.1,A.2=A.3),equation(v,segment(A.4,A.5)$SX)$SBX)


    splitFunctionSum(x:X):X ==
      kernelHandler(x)
      B:Union(List(X),"failed"):=isPlus(A.1)
      if B case List(X) then
        r:SBX:=equation(v,segment(A.4,A.5)$SX)$SBX
        reduce(_+,[summation(subst(B.j,A.2=A.3),r) for j in 1..#B]) 
      else
        x
 
    takeNTermsHighSum(x:X,n:X):X ==
      kernelHandler(x) 
      summation(subst(A.1,A.2=A.3),equation(v,segment(A.5-n+1,A.5)$SX)$SBX)
      
    takeNTermsLowSum(x:X,n:X):X ==
      kernelHandler(x) 
      summation(subst(A.1,A.2=A.3),equation(v,segment(A.4,A.4+n-1)$SX)$SBX) 
       
    shiftNTermsSum(x:X,n:X):X ==
      kernelHandler(x) 
      summation(subst(A.1,A.2=A.3-n),equation(v,segment(A.4+n,A.5+n)$SX)$SBX) 

    sfloor(x:X):X ==
      f:BasicOperator := operator('floor,1)
      if R has RetractableTo(Integer) then
        rx:Union(Fraction Integer, "failed"):=retractIfCan(x)
        if rx case Fraction(Integer) then return floor(rx)::X
      f(x)

    sceiling(x:X):X ==
      c:BasicOperator := operator('ceiling,1)
      if R has RetractableTo(Integer) then
        rx:Union(Fraction Integer, "failed"):=retractIfCan(x)
        if rx case Fraction(Integer) then return ceiling(rx)::X
      c(x)

    startsplit(x:X):X ==
      ss:BasicOperator := operator('startSplit,1)
      if R has RetractableTo(Integer) then
        rx:Union(Integer, "failed"):=retractIfCan(x)
        if rx case Integer then
          q:Fraction Integer:=rx/2
          if odd? rx then
            return ceiling(q)::X
          else
            return (1+ceiling(q))::X
      ss(x)
      
       
    splitTermsEvenOddSum(x:X):X ==
      kernelHandler(x)
      s1:SX:=segment(sceiling(A.4/2::X),sfloor(A.5/2::X))$SX
      s2:SX:=segment(startsplit(A.4), sceiling(A.5/2::X))$SX
      S1:=summation(subst(A.1,A.2=2*A.3),equation(v,s1)$SBX)
      S2:=summation(subst(A.1,A.2=2*A.3-1),equation(v,s2)$SBX)
      S1+S2
      -- TODO: complete this
      -- DONE: see ref

    reverseOrderSum(x:X):X ==
      kernelHandler(x)
      s:SX:=segment(A.4-A.4,A.5-A.4)$SX
      summation(subst(A.1,A.2=A.5-A.3),equation(v,s)$SBX)

    --
    -- Exports
    --
    splitOp(x:X,s:X):X ==
      is?(x,'%defsum) => splitSum(x,s)
      return x
      
    multiplyOp(x:X,s:X):X ==
      is?(x,'%defsum) => multiplySum(x,s)
      return x
 
    splitFunctions(x:X):X ==
      is?(x,'%defsum) => splitFunctionSum(x)
      return x      

    takeNTermsHigh(x:X,n:X):X ==
      is?(x,'%defsum) => takeNTermsHighSum(x,n)
      return x  
      
    takeNTermsLow(x:X,n:X):X ==
      is?(x,'%defsum) => takeNTermsLowSum(x,n)
      return x  
      
    shiftNTerms(x:X,n:X):X ==
      is?(x,'%defsum) => shiftNTermsSum(x,n)
      return x        

    splitTermsEvenOdd(x:X):X ==
      is?(x,'%defsum) => splitTermsEvenOddSum(x)
      return x       
      
    reverseOrder(x:X):X ==
      is?(x,'%defsum) => reverseOrderSum(x)
      return x      

--  X := operator 'X ; T:=summation(X(s),s=a..b)
--  P:=summation(X(s)*x^s,s=0..b)
--  f(n)==eval(P,b=n)
--  D(P,x,2)
--  name mainKernel(P) ->> %defsum
\end{spad}

Tests (changes fricas 1.2 -> 1.3.+)

\begin{axiom}
X := operator 'X 
T:=summation(X(s),s=a..b)
T2:=multiplyOp(T,x^s)
T3:= D(T2,x)
T4:=takeNTermsHigh(T3,m)
T5:=shiftNTerms(T4,m)
T6:=splitOp(T5,k)
\end{axiom}

OK now; missing functions: CombineSplitOp,GetCoefficient,TakeTermsValue,CombineSplitFunctions,GetNonVariantsOutside,PutMultiplicandsInside

fricas
(1) -> <spad>
fricas
)abbrev package FORMAN FormalManipulations
++ Author: Kurt Pagani
++ Date Created: Tue Jun 19 19:09:16 CEST 2018
++ License: BSD
++ References:
++ Description:
++   Interactive Computer Manipulation of Formal Sums
++   (Thesis format: Monograph) by Nivedita Patil
++   Graduate Program in Computer Science
++     A thesis submitted in partial fulfillment of the requirements for the 
++     degree of Master of Science
++     The School of Graduate and Postdoctoral Studies
++     The University of Western Ontario
++     London, Ontario, Canada, (C) Nivedita Patil 2010
++   http://www.csd.uwo.ca/~watt/home/students/theses/NPatil2010-msc.pdf
++
++ Abstract:
++ The goal of the thesis is to explore how computer algebra systems can 
++ be augmented to allow user-guided transformation and simplification of 
++ expressions involving symbolic summation. Mathematical expressions 
++ represented as trees are one of the data objects of computer algebra 
++ systems. By accessing and manipulating these data objects we can simplify 
++ and transform expressions involving symbolic summation. To choose what 
++ transformations to be performed is under the discretion of the user. We
++ present a conceptual framework to perform transformations on expressions 
++ involving symbolic summation. This is done by creating a set of library 
++ functions for interactive manipulation of formal sums. We base our design 
++ on the properties of summation. This idea is also extended to other 
++ associative operators such as product and definite integral.
++
++ Keywords: 
++   Formal Sums, Computer Algebra System, Associative Operators.
++
FormalManipulations(R) : Exports == Implementation where
R:Join(Comparable,IntegralDomain) X ==> Expression R PI ==> PositiveInteger UK ==> Union(Kernel X,"failed") KX ==> Kernel X SX ==> Segment X SBX ==> SegmentBinding X --PINT ==> Polynomial(Integer) --SBPINT ==> SegmentBinding(PINT)
Exports == with
splitOp : (X,X) -> X multiplyOp : (X,X) -> X splitFunctions : X -> X takeNTermsHigh : (X,X) -> X takeNTermsLow : (X,X) -> X shiftNTerms : (X,X) -> X splitTermsEvenOdd : X -> X reverseOrder : X -> X --splitSum : (X,X) -> X --coerce : % -> OutputForm
Implementation == add
kernelHandler(x) ==> -- macro mk:UK:=mainKernel(x) if mk case KX then K:KX:=mk else return x A:List X:=argument K v:Symbol:=retract(A.3)@Symbol
splitSum(x:X,s:X):X == kernelHandler(x) S1:=summation(subst(A.1,A.2=A.3),equation(v,segment(A.4,s)$SX)$SBX) S2:=summation(subst(A.1,A.2=A.3),equation(v,segment(s+1,A.5)$SX)$SBX) S1+S2
multiplySum(x:X,s:X):X == kernelHandler(x) summation(s*subst(A.1,A.2=A.3),equation(v,segment(A.4,A.5)$SX)$SBX)
splitFunctionSum(x:X):X == kernelHandler(x) B:Union(List(X),"failed"):=isPlus(A.1) if B case List(X) then r:SBX:=equation(v,segment(A.4,A.5)$SX)$SBX reduce(_+,[summation(subst(B.j,A.2=A.3),r) for j in 1..#B]) else x
takeNTermsHighSum(x:X,n:X):X == kernelHandler(x) summation(subst(A.1,A.2=A.3),equation(v,segment(A.5-n+1,A.5)$SX)$SBX)
takeNTermsLowSum(x:X,n:X):X == kernelHandler(x) summation(subst(A.1,A.2=A.3),equation(v,segment(A.4,A.4+n-1)$SX)$SBX)
shiftNTermsSum(x:X,n:X):X == kernelHandler(x) summation(subst(A.1,A.2=A.3-n),equation(v,segment(A.4+n,A.5+n)$SX)$SBX)
sfloor(x:X):X == f:BasicOperator := operator('floor,1) if R has RetractableTo(Integer) then rx:Union(Fraction Integer, "failed"):=retractIfCan(x) if rx case Fraction(Integer) then return floor(rx)::X f(x)
sceiling(x:X):X == c:BasicOperator := operator('ceiling,1) if R has RetractableTo(Integer) then rx:Union(Fraction Integer, "failed"):=retractIfCan(x) if rx case Fraction(Integer) then return ceiling(rx)::X c(x)
startsplit(x:X):X == ss:BasicOperator := operator('startSplit,1) if R has RetractableTo(Integer) then rx:Union(Integer, "failed"):=retractIfCan(x) if rx case Integer then q:Fraction Integer:=rx/2 if odd? rx then return ceiling(q)::X else return (1+ceiling(q))::X ss(x)
splitTermsEvenOddSum(x:X):X == kernelHandler(x) s1:SX:=segment(sceiling(A.4/2::X),sfloor(A.5/2::X))$SX s2:SX:=segment(startsplit(A.4), sceiling(A.5/2::X))$SX S1:=summation(subst(A.1,A.2=2*A.3),equation(v,s1)$SBX) S2:=summation(subst(A.1,A.2=2*A.3-1),equation(v,s2)$SBX) S1+S2 -- TODO: complete this -- DONE: see ref
reverseOrderSum(x:X):X == kernelHandler(x) s:SX:=segment(A.4-A.4,A.5-A.4)$SX summation(subst(A.1,A.2=A.5-A.3),equation(v,s)$SBX)
-- -- Exports -- splitOp(x:X,s:X):X == is?(x,'%defsum) => splitSum(x,s) return x
multiplyOp(x:X,s:X):X == is?(x,'%defsum) => multiplySum(x,s) return x
splitFunctions(x:X):X == is?(x,'%defsum) => splitFunctionSum(x) return x
takeNTermsHigh(x:X,n:X):X == is?(x,'%defsum) => takeNTermsHighSum(x,n) return x
takeNTermsLow(x:X,n:X):X == is?(x,'%defsum) => takeNTermsLowSum(x,n) return x
shiftNTerms(x:X,n:X):X == is?(x,'%defsum) => shiftNTermsSum(x,n) return x
splitTermsEvenOdd(x:X):X == is?(x,'%defsum) => splitTermsEvenOddSum(x) return x
reverseOrder(x:X):X == is?(x,'%defsum) => reverseOrderSum(x) return x
-- X := operator 'X ; T:=summation(X(s),s=a..b) -- P:=summation(X(s)*x^s,s=0..b) -- f(n)==eval(P,b=n) -- D(P,x,2) -- name mainKernel(P) ->> %defsum</spad>
fricas
Compiling FriCAS source code from file 
      /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/5640122448356627221-25px001.spad
      using old system compiler.
   FORMAN abbreviates package FormalManipulations 
------------------------------------------------------------------------
   initializing NRLIB FORMAN for FormalManipulations 
   compiling into NRLIB FORMAN 
****** Domain: R already in scope
   processing macro definition kernelHandler x ==> SEQ(:=(mk: Union(Kernel Expression R,failed),mainKernel x),IF(case(mk,Kernel Expression R),:=(K: Kernel Expression R,mk),return x),:=(A: List Expression R,argument K),exit(1,:=(v: Symbol,@(retract A 3,Symbol)))) 
   compiling local splitSum : (Expression R,Expression R) -> Expression R
Time: 0.03 SEC.
compiling local multiplySum : (Expression R,Expression R) -> Expression R Time: 0 SEC.
compiling local splitFunctionSum : Expression R -> Expression R Time: 0.01 SEC.
compiling local takeNTermsHighSum : (Expression R,Expression R) -> Expression R Time: 0 SEC.
compiling local takeNTermsLowSum : (Expression R,Expression R) -> Expression R Time: 0 SEC.
compiling local shiftNTermsSum : (Expression R,Expression R) -> Expression R Time: 0 SEC.
compiling local sfloor : Expression R -> Expression R ****** Domain: R already in scope augmenting R: (RetractableTo (Integer)) Time: 0 SEC.
compiling local sceiling : Expression R -> Expression R ****** Domain: R already in scope augmenting R: (RetractableTo (Integer)) Time: 0 SEC.
compiling local startsplit : Expression R -> Expression R ****** Domain: R already in scope augmenting R: (RetractableTo (Integer)) Time: 0 SEC.
compiling local splitTermsEvenOddSum : Expression R -> Expression R Time: 0.03 SEC.
compiling local reverseOrderSum : Expression R -> Expression R Time: 0 SEC.
compiling exported splitOp : (Expression R,Expression R) -> Expression R Time: 0 SEC.
compiling exported multiplyOp : (Expression R,Expression R) -> Expression R Time: 0 SEC.
compiling exported splitFunctions : Expression R -> Expression R Time: 0 SEC.
compiling exported takeNTermsHigh : (Expression R,Expression R) -> Expression R Time: 0 SEC.
compiling exported takeNTermsLow : (Expression R,Expression R) -> Expression R Time: 0 SEC.
compiling exported shiftNTerms : (Expression R,Expression R) -> Expression R Time: 0 SEC.
compiling exported splitTermsEvenOdd : Expression R -> Expression R Time: 0 SEC.
compiling exported reverseOrder : Expression R -> Expression R Time: 0 SEC.
(time taken in buildFunctor: 0)
;;; *** |FormalManipulations| REDEFINED
;;; *** |FormalManipulations| REDEFINED Time: 0 SEC.
Cumulative Statistics for Constructor FormalManipulations Time: 0.11 seconds
finalizing NRLIB FORMAN Processing FormalManipulations for Browser database: --------constructor--------- --->-->FormalManipulations((splitOp ((Expression R) (Expression R) (Expression R)))): Not documented!!!! --->-->FormalManipulations((multiplyOp ((Expression R) (Expression R) (Expression R)))): Not documented!!!! --->-->FormalManipulations((splitFunctions ((Expression R) (Expression R)))): Not documented!!!! --->-->FormalManipulations((takeNTermsHigh ((Expression R) (Expression R) (Expression R)))): Not documented!!!! --->-->FormalManipulations((takeNTermsLow ((Expression R) (Expression R) (Expression R)))): Not documented!!!! --->-->FormalManipulations((shiftNTerms ((Expression R) (Expression R) (Expression R)))): Not documented!!!! --->-->FormalManipulations((splitTermsEvenOdd ((Expression R) (Expression R)))): Not documented!!!! --->-->FormalManipulations((reverseOrder ((Expression R) (Expression R)))): Not documented!!!! ; compiling file "/var/aw/var/LatexWiki/FORMAN.NRLIB/FORMAN.lsp" (written 29 NOV 2024 06:29:33 AM):
; wrote /var/aw/var/LatexWiki/FORMAN.NRLIB/FORMAN.fasl ; compilation finished in 0:00:00.116 ------------------------------------------------------------------------ FormalManipulations is now explicitly exposed in frame initial FormalManipulations will be automatically loaded when needed from /var/aw/var/LatexWiki/FORMAN.NRLIB/FORMAN

Tests (changes fricas 1.2 -> 1.3.+)

fricas
X := operator 'X

\label{eq1}X(1)
Type: BasicOperator?
fricas
T:=summation(X(s),s=a..b)

\label{eq2}\sum_{
\displaystyle
{s = a}}^{
\displaystyle
b}{X \left({s}\right)}(2)
Type: Expression(Integer)
fricas
T2:=multiplyOp(T,x^s)

\label{eq3}\sum_{
\displaystyle
{s = a}}^{
\displaystyle
b}{{X \left({s}\right)}\ {{x}^{s}}}(3)
Type: Expression(Integer)
fricas
T3:= D(T2,x)

\label{eq4}\sum_{
\displaystyle
{s = a}}^{
\displaystyle
b}{s \ {X \left({s}\right)}\ {{x}^{s - 1}}}(4)
Type: Expression(Integer)
fricas
T4:=takeNTermsHigh(T3,m)

\label{eq5}\sum_{
\displaystyle
{s ={- m + b + 1}}}^{
\displaystyle
b}{s \ {X \left({s}\right)}\ {{x}^{s - 1}}}(5)
Type: Expression(Integer)
fricas
T5:=shiftNTerms(T4,m)

\label{eq6}\sum_{
\displaystyle
{s ={b + 1}}}^{
\displaystyle
{m + b}}{{\left(s - m \right)}\ {X \left({s - m}\right)}\ {{x}^{s - m - 1}}}(6)
Type: Expression(Integer)
fricas
T6:=splitOp(T5,k)

\label{eq7}\begin{array}{@{}l}
\displaystyle
{\sum_{
\displaystyle
{s ={b + 1}}}^{
\displaystyle
k}{{\left(s - m \right)}\ {X \left({s - m}\right)}\ {{x}^{s - m - 1}}}}+ 
\
\
\displaystyle
{\sum_{
\displaystyle
{s ={k + 1}}}^{
\displaystyle
{m + b}}{{\left(s - m \right)}\ {X \left({s - m}\right)}\ {{x}^{s - m - 1}}}}
(7)
Type: Expression(Integer)

OK now; missing functions: CombineSplitOp?,GetCoefficient?,TakeTermsValue?,CombineSplitFunctions?,GetNonVariantsOutside?,PutMultiplicandsInside?